
coderush
a productivity extension

for Microsoft Visual Studio

by DevExpress

by Alex Skorkin (c) 2015

About Author

Alex Skorkin is working for DevExpress. His overall experience with Visual Studio productivity tools starts since
2004th. You can reach him at alex@skorkin.com and www.skorkin.com.

Devex, DevExpress, Developer Express, DXCore, CodeRush and Refactor! are trademarks of Developer Express Inc.
All other brands or product names are trademarks and/or service marks of their respective owners.

Contents at a Glance

Introduction 17

Prerequisites 29

Chapter 1. Duplicate Code Detection and Consolidation 37

Chapter 2. Static code analysis and code issues technology 63

Chapter 3. Code-generation templates 175

Chapter 4. Consume-first code declaration providers 213

Chapter 5. Coding helpers and assistants 247

Chapter 6. Code selection and clipboard tools 275

Chapter 7. Code modification providers 313

Chapter 8. Code navigation utilities 355

Chapter 9. Unit testing service 393

Chapter 10. Code editor visualization 415

Chapter 11. Code refactoring support 435

Chapter 12. CodeRush extensibility 541

Appendix A. Terminology 633

Appendix B. CodeRush Options 639

Table of Contents
Introduction 17

DevExpress Visual Studio productivity tools 17
IDE Tools chief architect – Mark Miller 18
IDE Tools documentation and info resources 18
IDE Tools dedicated community 18
IDE environment changes after IDE Tools are installed 18
Settings schemes: FrictionFree and Default modes 20
The “What Happened?” (Feature UI) window 21
Getting up to speed with IDE tools 23
The CodeRush/Refactor! key (shortcut) 25
CodeRush Training window 25
IDE Tools User Guide 27

Prerequisites 29
Supported Visual Studio versions 29
Supported programming languages 29
System requirements 29
How to install the IDE Tools 30
How to install multiple IDE Tools versions side-by-side 33
How to install/uninstall IDE tools in quiet/silent mode 34
How to temporally disable IDE tools (load manually) 34
DevExpress support and knowledge base 35

Chapter 1. Duplicate Code Detection and Consolidation 37
Duplicate Detection and Consolidation overview 37
Duplicate Real-time detection in Visual Studio 39
Duplicate Detection Visual Studio tool window 44
Duplicate Detection using the Stand-alone Application 47
Duplicate Consolidation inside Visual Studio 51
Duplicate Detection analysis options 57
Duplicate Detection versus Code Clone Analysis in Visual Studio 2012 58

Chapter 2. Static code analysis and code issues technology 63
Code Issues technology overview 63
Code Issues types overview 63
Code Issues visual presentation 65
Code Issues fixes and suppression 69
Code Issues navigation techniques 72
Code Issues tool window 75
Code Issues configuration and options 77
Code Issues overview 79
Code Issues hints for declaration and initialization 79
Code Issues hints for expressions 83
Code Issues hints for types and members 89
Code Issues for anonymous methods and lambda expressions 98
Code Issues of the dead code type for qualifiers 101
Code Issues of the dead code type for members and blocks 107
Code Issues for Switch (Select) and Case statements 114
Warning code issues for the IDisposable pattern 118
Complex Member 121
Code Issues specific to declaring types 122
Code Issues specific for static classes 126
Code Issues for interfaces 130
Code Issues specific for declaring variables and constants 133
Code Issues specific to constructors 141
Code Issues specific to partial methods 148
Code Issues for virtual members 151
Code Issues for overridden members 154
Code Issues specific to extension methods 158
Code Issues specific to operators 162
Code Issues specific to C# and VB language keywords 165

Chapter 3. Code-generation templates 175
CodeRush Code Templates overview 175
Templates language and learning basics 178

Dynamic templates and dynamic lists 180
Templates option page 183
Dynamic Lists option page 189
Resolving code template conflicts 192
Importing and Exporting code templates 193
Standard Templates Library 195
Smart Constructor – Generating advanced constructors 197
Creating code templates overview 202
Creating simple templates step by step 205

Chapter 4. Consume-first code declaration providers 213
Declaring type declarations 213

Declare Attribute 213
Declare Class 214
Specific code providers for declaring new classes 215
Declare Struct 218
Declare Interface 220
Declare Delegate 221
Declaring enumeration types and its elements 221
An option for positioning newly declared types 224

Declaring members 225
Declaring methods and constructors 225
Declaring various properties 228
Declaring events and event handlers 235

Declaring locals 237
Declaring fields 239
MVC-specific providers 242

Chapter 5. Coding helpers and assistants 247
Auto Declare 247
Intelligent code lines modification using the Duplicate Line feature 249
Code editor auto-complete features – Intellassist 253

Intellassist configuration and options 256

Smart Parentheses and Smart Brackets 258
Smart Enter 260
Scope Cycle 261

Spell Checker 262
How to add an Open Office dictionary 264
Spell checking the entire solution 265

Toggle Region 267
Toggle Regions Outlining 267
Move to Region 268
Organizing source code and sorting class members 270

Chapter 6. Code selection and clipboard tools 275
Camel Case Navigation and Selection 275
Selection Increase 275
Selection Reduce 276
The support of multi-selection for Visual Studio 276
Wrapping code blocks with the Code Embeddings feature 281

Code Embeddings Options 285
Creating custom Code Embeddings 289

Inverting a code block into its opposite using Selection Inversion 293
Customizing Selection Inversion and its predefined templates 294

Quick Comment/Uncomment 296
Smart Cut and Smart Copy 297
Intelligent Paste 300
Intelligent Paste Options 303
Paste Replace Word 306
Clipboard History 306

Chapter 7. Code modification providers 313
Create Descendant and Create Descendant (with virtual overrides) 313
Create Ancestor 315
Creating interface implementers 315
Implementing the IDisposable pattern 318
Converting methods to functions or procedures 324
Converting unimplemented properties 325
Quick ways to add and remove a set/get property accessor 327
Code fixes for code issues for switch (select) statements 329
Reverse For Loop 331

Add Initialization 331
Changing an explicit cast-expression to an ‘as’ operator and back 333
Working in two-dimensional space 334
Embed Selection 336
Invert Selection 337
Add XML Comments 338
Add Contract 341
Add Missing Constructors code provider 344
Convert to Integer 345
Create Event Trigger 346
Reference Assembly 347
Remove Region Directives 348
Code provider to format the String.Format call output 348
Seal Class 351

Chapter 8. Code navigation utilities 355
Markers 355
Bookmarks 357
Tab to Next Reference 359
Highlighting an identifier and its references 363
Click Identifier 364
Drop Marker Before Jump 365
Quick Navigation 369

Advanced CodeRush Quick Navigation customization 373

Navigation providers overview 374
Navigation providers list 376

Quick File Navigation 377
Open Files tool window 379
Browsing recently accessed files 382
Working with HTML tables 386
Step Into Member 388
Navigating in the abstract source code tree 389
Navigation between expressions of the parsed source tree 389

Chapter 9. Unit testing service 393
Overview 393
Unit testing inside the code editor and the Solution Explorer 394
Machine.Specifications (mspec) testing framework support 397
Managing tests with the Unit Test Runner tool window 400
Shortcuts and actions 403
Configuration and options 406
Code templates for generating unit testing code 409
Silverlight testing framework support 410
Support for XUnit, NUnit, MBUnit, and Visual Studio frameworks 412

Chapter 10. Code editor visualization 415
Structural Highlighting 415
Right Margin Line 416
Line Highlighter 418
Member Icons 420
Show Metrics 422
Flow Break Icons 425
XML Doc Comments Painter 426
Region Painting 429
Comment Highlighter 430
Comment Painter 432

Chapter 11. Code refactoring support 435
Introduction 435
What is refactoring? Benefits of a code refactoring 435
How to perform a code refactoring 436
Refactorings preview hinting 438
Refactorings that change signatures 439

Add Parameter 440
Create Overload 441
Decompose Parameter 445
Introduce Parameter Object 446
Convert to Point 448
Convert to Tuple 449
Convert to Size 451

Converting between static and instance members 451
Promoting locals and constant value expressions into parameters 454
Reordering method parameters 457
Safe rename a public API member and mark it obsolete 460

Remove Parameter 460

Refactorings conditionals 462
Refactoring multi-conditional statements 462
Refactoring ternary expressions into null-coalescing operations 465
Flatten Conditional 467

Refactorings declarations and initializations 470
Refactorings for implicitly-typed local variables 470
Use Named Arguments 472
Name Anonymous Type 473

Refactorings anonymous methods and lambda expressions 475
Refactoring loops and blocks 479

Adding and removing block delimiters in C#/C++ and JavaScript 479
Converting loops: ForEach to For and back 480
Refactoring using statements 482
Lock to Try/Finally 486
Introduce ForEach Action 487
Refactoring Visual Basic With statements 489

Refactoring C++ macros 492
Inline Macro 492
Use Const 492
Use typedef 492

Refactorings for moving and extracting methods 493
Extract Method 493
Inline Method 497

Refactorings for simplifying of parallel computing development 499
Refactorings to execute statements asynchronously 506

Refactoring properties and fields 508
Refactorings specific to auto-implemented properties 508
Encapsulation refactorings 510

Refactoring strings 514
Concatenating and splitting strings 514
String.Format-specific refactorings 516

Use StringBuilder 518
Use String.Compare 522
Use IsNullOrEmpty 522
Use Environment.NewLine 524

Refactorings for types and type casting 525
Introduce Alias 525
Move Type to File 526
Optimize Namespace References 526
Sort Namespace References 528

Refactoring visibilities 529
Reduce Visibility 529
Variable scope widening (Widen Scope) 530

Various refactorings 533
Extract Interface 533
Rename 534
Use Implicit Line Continuation 536

Chapter 12. CodeRush extensibility 541
DXCore Framework plug-ins overview 541
DXCore plug-ins architecture and design philosophy 541
Design Philosophy 541
DXCore plug-in types and naming convention 542

DXCore plug-ins overview 542
How DXCore plug-ins are loaded 543
How to create a new CodeRush (DXCore) plug-in 545
How to install a particular DXCore plug-in 549
Troubleshooting the DXCore plug-in loading 551
Message Log 554
Deploying DXCore or community plug-ins using a VSIX extension 557

Shared Source Samples Solution 561
CodeRush object for accessing to DXCore services 562
Option Pages and Decoupled Storage overview 563

How to create a new plug-in Options page 564
How to implement the Options page logic for storing settings 566
How to load stored settings from an Options page inside of a plug-in 568
DXCore DecoupledStorage object for storing data 570
DXCore DecoupledStorage structure and settings file format 572

How to use DXCore DecoupledStorage to persist plug-in data 574

DXCore Linked Identifiers feature 575

DXCore adornments architecture 577
DXCore adornments creation and wizards 579

DXCore abstract source tree structure 583
DXCore Expression Lab tool window 585
How to enumerate solution and source code items 587
How to parse source code using the DXCore integrated code parsers 591
Source code and source tree elements coordinate inside source files 594
How to edit source files of an entire Visual Studio solution 602
How to use DXCore in a Console App outside of Visual Studio 604

DevExpress DXCore controls overview 609
DXCore components and controls list 609
DXCore Components – Action 611
How to use Action DXCore control 614
DXCore Components – CodeMetricProvider 616
How to use CodeMetricProvider control to build you own code metric 619
DXCore components – Refactoring provider 621
Creating a simplest refactoring using the RefactoringProvider control 624

How to specify the user information and use it inside text expansions 628
Appendix A. Terminology 633
Appendix B. CodeRush Options 639

IDE Tools Options Dialog 639
Startup options page 642
Settings paths option page 644
Changing global identifiers style in CodeRush 645
Smart Tags Catalog options page 646
Features options page 648
Features Statistics options page 649
Shortcuts options page 650
How to assign a shortcut key to a particular action 658
Hinting\Action Hints option page 661
Hinting\Big Hints option page 662
Unavailable Contexts option page 663

Introduction

DevExpress Visual Studio productivity tools

DevExpress engineers feature-complete visual components and IDE Tools productivity add-ins for Visual Studio.
NET. IDE Tools are intended to boost your overall coding performance and make coding enjoyable and fun inside
Visual Studio. These tools are capable of improving the development environment from the inside out – bringing you
new ways to look at code, new ways to generate code, new ways to navigate through code, new ways to refactor your
code and new ways to create your own extensions to your development environment.

IDE Tools contains of several products:

Free versions: DXCore, CodeRush Xpress. Pro versions: CodeRush Pro

DevExpress CodeRush Pro

CodeRush is a powerful Visual Studio® .NET add-in that enhances the developer experience by accelerating develop -
er and team productivity via an integrated suite of technologies. CodeRush integrates with Visual Studio to automate
common code creation tasks, and to simplify code investigation. It clearly shows a code structure, and creates typical
code blocks with a minimum of effort. You can create new code blocks with only a few keystrokes, or with a few
clicks. Features are organized into three categories: code creation, navigation, and visualization. Features can be
chained together to dramatically increase developer speed and efficiency. CodeRush is built on the DXCore engine.

Key advantages and features of CodeRush:

•	 Easy code investigation

•	 Automation of common code creation tasks

•	 Easy search and navigation to a required code location

•	 Fast and easy selection

•	 On-the-fly code issues search

•	 Easy and effective mastering of CodeRush features

Write better code faster using CodeRush templates, consume-first declaration, and advanced selection & clipboard
features. Improve code with powerful refactorings, background code issue analysis & fixes. Run tests faster. Rename
faster. Find all references faster. No tool is more efficient than CodeRush.

DevExpress CodeRush Xpress

CodeRush Xpress is available to all Visual Studio 2009 and 2010 C# and VB developers for free and offers a
comprehensive suite of tools that enable you and your team to simplify and shape complex code – making it easier to
read and less costly to maintain. It includes code simplification, creation, navigation, visualization and refactoring fea
tures. CodeRush Xpress is built based on the DXCore engine.

Key advantages and features of CodeRush Xpress:

•	 One-key access to refactorings, micro refactorings, and TDD-style code building features.

•	 Powerful navigation tools help get you to where you need to be efficiently.

•	 A sampling of editor, selection, and clipboard tools.

17

You may register your copy of CodeRush Xpress to automatically receive product updates with new functionality.
The registration procedure takes only a couple of minutes and doesn’t require personal details other than your name
and email address.

IDE Tools chief architect – Mark Miller

Mark Miller is Chief Architect of the IDE Tools division at DevExpress. Mark is a high-speed developer with strong
expertise in architecture, plug-in systems, component development, extreme programming, effective user interfaces,
good class design and great UI. Mark is well known for both his sense of humor as well as his software development
jam sessions. A recent review described one of Mark’s sessions as “spectacular-insightful, fast paced, humorous,
and impressive. Mark is one of the few people with the audacity to perform coding improvisations in front of a large
audience.”

Mark is a C# MVP. He has been developing software since the early 1980s. He spent the 12 years preceeding 2004
coding developer tools, which are his – figuring out how to make developers more efficient. He was awarded the
“Spirit of Delphi” by Borland. He created CodeRush for Delphi in 1997, and it has won numerous reader’s choice
awards.

IDE Tools documentation and info resources

You may look at the following information resources to learn more about IDE Tools products:

•	 Online help for IDE Productivity Tools at http://help.devexpress.com.

•	 User Guide available via the “DevExpress | User Guide” menu after the IDE Tools are installed.

•	 Online Training Videos at http://tv.devexpress.com

•	 Mark Miller‘s (the chief architect of the IDE Tools) blog at http://community.devexpress.com/
blogs/markmiller

•	 Rory Becker’s blog at http://community.devexpress.com/blogs/rorybecker

IDE Tools dedicated community

DXCore Community PlugIns at https://code.google.com/p/dxcorecommunityplugins/

This site is all about Free DXCore plug-ins for IDE Tools and related products. These plug-ins represent additional
pieces of functionality for Visual Studio .NET which are designed to improve your experience.

Plugins on this site require:

•	 A non-express version of either VS2005, VS2008 or VS2010

•	 A DXCore based product (DXCore, CodeRush, CodeRush Xpress or Refactor! Pro)

The required version of these products varies. It is generally recommended to use the latest version available.

IDE environment changes after IDE Tools are installed

The first two things you’ll notice in the IDE (once everything is loaded) include:

•	 The DevExpress menu. Trough the menu you can access add-in related tool windows, configure
options, check for updates, unload tools, etc.

18

•	 The DXCore Visualizetoolbar. The toolbar, like all other standard Visual Studio toolbars, inte-
grates into the IDE toolbars area when IDE tools are loaded. Here’s what it looks like:

The green ball in the right down corner indicates whether a particular feature is enabled or not.

Visualize toolbar is enabled only when a Code Editor is active, otherwise it is disabled:

This toolbar contains a set of toggle buttons allowing you to easily turn on/off the following features CodeRush pro -
vides:

•	 Code Issues

•	 Spell Checker

•	 Member Icons

•	 Flow Breaks Evaluation

•	 Show Metrics

•	 Structural Highlighting

•	 Region Painting

•	 Right Margin line

•	 Line Highlighter

•	 XML Doc Comments

•	 Step Into Member

All of these features are visual, and related to the code editor except “Step Into Member” – which is used in Debug
Mode.

19

Although the Visualize toolbar behaves as a common toolbar, you aren’t able to customize it using the IDE:

From the other side, this is not really necessary (e.g. remove buttons from the toolbar), but this can be achieved pro-
grammatically, however. For example, you can place a new button on the toolbar using the DXCore Action compo-
nent while creating a new DXCore plug-in.

Settings schemes: FrictionFree and Default modes

CodeRush supports setting schemes. This allows you to have different settings schemes for laptop and desktop
computers, for various keyboard layouts, for numerous environments and development tasks: code review, code
navigation, code refactoring, etc. You can disable or enabled any features in a particular scheme.

The schemes are controlled on the corresponding option page of the Options Dialog:

20

The “Current scheme” shows you the active scheme in the same way as you see it on the DXCore Visualize toolbar:

The “Add new scheme…” and “Delete scheme” buttons are self explanatory.

Then, the list of most “noticeable” CodeRush features follows. If you uncheck the feature, it will be disabled in the
current scheme. If you click the small button, the corresponding option page will be opened where you can configure
the feature more carefully. The list of features has been added to quickly toggle the features between the two built-in
settings schemes:

•	 Default. This scheme was used in CodeRush for years, and is suggested for users that are familiar
with CodeRush and experienced with the most of its features.

•	 FrictionFree. This scheme is designed for new users who are not very familiar with CodeRush.
New users may find some of the features annoying (e.g., unexpected templates expansions) and would
like to leave the standard Visual Studio environment unchanged (e.g., no CodeRush visual features). This
scheme is set by default on a fresh install.

In the FrictionFree settings scheme, many features are disabled. For instance, the template expansion key is changed
to Tab instead of Space Bar. The following features are also inactive in this scheme:

•	 Visual features: Metrics, Comment Painter, Flow Break Evaluation.

•	 Smart auto-completion features: Smart Parentheses and Brackets, Smart Enter, Intellassist, Dupli-
cate Line.

•	 Clipboard features like Intelligent Paste.

•	 Keyboard shortcuts like F2, Num +, Num -, etc.

•	 Dozens of code issues.

The built-in schemes are stored separately and can not be removed.

The “What Happened?” (Feature UI) window

The “What happened?” window (also known as the “Feature UI” window) appears in the bottom right corner
each time a particular IDE tools feature is activated, to inform you what’s going on inside Visual Studio IDE. In the
majority of cases, the window is used to simplify learning of the CodeRush specific features. This window informs
you of the performed feature, and may suggest the following choices:

Action Description
OK Always executes just performed feature without showing the “What happened?”

window.
Disable Disables a feature forever.
Options Opens an appropriate options page for an activated feature.
Template Options Opens the “Template” options page in the Options Dialog that allows you to customn-

ize the expanded template.
Always do this Same as OK action.

21

Execute this VS command
instead

Same as Disable action. Doesn’t suppress the Visual Studio’s feature anymore.

Shortcut combination Opens the Shortcuts options page that allows you to tweak the key combination for
this particular feature.

If you perform one of the actions in the “What Happened?” window, your choice will be remembered, and the
window will no longer appear in the future. Otherwise, the window will always appear until you make a decision
on an action for this particular feature. You can tweak your choices for all features performed so far on the “Core |
Features” options page in the Options Dialog.

Here are several examples of this window:

A template is expanded:

A conflict shortcut is available:

A particular non-conflicting feature is performed:

22

You may find this window inconvenient, so you might want to get rid of it (disable it) and ask IDE Tools to make
decisions automatically for you. This is possible on the same Core | Features options page. To disable the “What
happened?” window – uncheck the “Show Feature UI window” check box. For automatic decisions on conflicting
shortcuts and features execution, change the “When conflicting shortcuts exist” and the “When feature is being exe-
cuted” options accordingly:

Getting up to speed with IDE tools

How to learn the product tips:

•	 Dock the CodeRush Training window (DevExpress | Tool Windows | CodeRush) next to the
editor. The CodeRush Training tool window shows you features that can be used while the cursor is at the
current position, and is designed to help you learn much of CodeRush and Refactor! without diving into
the User Guide.

23

•	 Read the User Guide. From the DevExpress menu select “User Guide”. Use the tree list to drill
into topics of interest.

•	 Access training videos through the DevExpress menu or via this link.

•	 Watch online videos at DevExpress TV Channel.

•	 Subscribe to this blog.

Useful features to get up to speed:

•	 Code navigation features

o Press Alt+Home to drop a stack-based marker. Press Esc to collect it. Markers are navigation waypoints
that help you find your way back through important points in your code.

o Navigate through all references to the identifier or type at the caret, by pressing the Tab key
(Shift+Tab navigates back, and/or Esc brings you to the place where you first pressed Tab).

•	 Code selectionfeatures

o Widen the selection by logical blocks by pressing Num+ on the numeric keypad, or Ctrl+W. Once a selec-
tion has been widened, you can reduce it using Num- on the numeric keypad, or Ctrl+Shift+W.

o Wrap multi-line selections in try/catch blocks by pressing the letter “c“. Look to the training window for
more wrapping shortcuts, when the selection extends beyond two or more lines.

•	 Code generation features

o Create code blocks with the template (e.g. type the letter “b“, and then press the spacebar to get brace block
pairs in C#, C++ or JavaScript or, similarly, you can wrap a multi-line selection inside braces by pressing the letter
“b“).

o Use the Refactor! key for TDD-style development. Create your client calls first, and then press the Refac-
tor! key to declare methods, classes, structures, interfaces, fields, locals, etc.

•	 Code helpers and refactorings

o Review the list of refactorings in Refactor! Pro. The full list of refactorings you have can be also found on
the “Editor | Refactoring | Catalog“ in the Options Dialog.

o Change the visibility of the member or type containing the caret by pressing the Alt+Up and Al-
t+Down keys.

o Review the list of available shortcuts for CodeRush and Refactor! features.

The CodeRush/Refactor! key (shortcut)

The common shortcut for invoking refactorings is the CTRL+` (backtick) key combination. This shortcut invokes
the Refactor! (CodeRush) popup menu which lists all the refactorings available for the current context. Note that
there are also other ways to perform a code refactoring.

On some non-English keyboards it may not work. To change the shortcut, please do the following:

1. Use the “Ctrl+Shift+Alt+O” shortcut to invoke the Options Dialog.

24

2. In the tree view on the left, navigate to this folder: IDE

3. Select the Shortcuts options page.

4. Click the Find toolbar button and search for a shortcut, linked to the “SmartTagExecute” command.

5. Modify it as you require.

CodeRush Training window

The CodeRush Training tool window shows you features that can be used while the cursor is at the current position.
The tool window shows you features that can be used while the cursor is at the current position, e.g. it can list
available templates, refactorings, selection and navigation features, and others. If a feature can be accessed via a
shortcut, this shortcut is shown beside the feature. The window can be accessed via the DevExpress | Tool Win-
dows | CodeRush menu item in your IDE.

For instance, if the cursor is anywhere within a class, the tool window will list all templates available for the cur-
rent context:

Otherwise, if you have certain code selected, you’ll get features to work with selections:

25

If a caret is on a method name, you’ll see the list of refactorings available:

Note: the window is context-sensitive, so it may decrease performance a bit while working in Visual Studio.

26

IDE Tools User Guide

The User Guide documents the DXCore and dependent products (such as CodeRush and/or Refactor! if they’re
installed) and also includes documentation covering Visual Studio extensibility. This tutorial can be viewed by
selecting “User Guide…” from the DevExpress menu. You can also view it by selecting “Guide” from the DevEx-
press | Tool Windows menu.

Window overview

The guide consists of an organized hierarchy of topics (the topic tree), a splitter, toolbar, and this content window.
You can hide and display this tree list by double-clicking on the dark blue title bar/splitter directly above this text.
When the tree list is visible, just above it, you’ll find the Topic Search edit and the topic history browse buttons. In
the Search text box, you can enter a few characters of a topic title to display that topic immediately.

Orientation/Docking

You can position the topic tree above or adjacent to this content window. You can also have the topic tree view posi-
tioned automatically, based on the aspect ratio of the window.

If you would like this user guide to appear as a tabbed document among your source files, right-click on the cap-
tion bar of this user guide tool window and uncheck the “Dockable” entry. This will display the user guide in the
document area.

Dynamic Content

Many sections of the user guide are dynamically generated based on current settings, state, and the plug-ins that you
have loaded. Dynamic content ensures this guide will stay up to date, even as your IDE tools install changes with

27

new modules, and as you explore and configure new features of the product.

Note: this user guide has the ability to document .NET classes using reflection and XML documentation comments.
This technology is primarily used to document classes for extending DXCore, but it is also possible to drill down into
.NET classes (providing those classes are available to our reflection code).

To learn more about User Guide window, see the “Working with the Guide” topic in the User Guide itself. To learn
more about populating it with static and dynamic content – see the appropriate topic.

28

Prerequisites

Supported Visual Studio versions

Product Name Visual Studio 2005 Visual Studio 2008 Visual Studio 2010 Visual Studio 2012
DXCore

CodeRush Pro

CodeRush Xpress

Refactor! Pro

Note: IDE Tools can’t be used in Visual Studio Express Editions because 3rd party extensibility is not supported, and
not allowed in Express editions of Visual Studio.

Note2: DevExpress stopped supplying the IDE tools version compatible with Visual Studio 2002 and Visual Studio
2003. However, these versions are available for customers who purchased one of the latest product versions. So, once
you or your company purchases the license to CodeRushor Refactor! Pro, you’ll be able to download the version
which supports VS 2002 and VS 2003. Please refer to the following page to learn how to access it: How do I obtain
an older verion?

Supported programming languages

Product Name #C VB ++C XML HTML XAML ASP.
NET

 Java
Script

DXCore

CodeRush Pro

CodeRush Xpress

Refactor! Pro

System requirements

This is another frequent question from new CodeRush users, which is not exactly specified anywhere yet bes-
cause CodeRush does not really rely on hardware or software requirements – it should run OK everywhere your
Visual Studio is installed.

Supported Operating Systems

CodeRush supports any operating system no matter whether it is 32 or 64 bits with Visual Studio installed.

Hardware requirements

CodeRush does not require a lot of memory installed on your computer and does not need a high-speed processor.

29

How to install the IDE Tools

Once you download an installer from the DevExpress website, run it, and follow the instructions on the screen:

If you’re a registered user, choose the Registered Installation option, and enter your details on the next screen:

30

If you don’t have a license, you may install the product in the trial mode that lasts for 30 days. The functionality of the
standard products, when installed in trial mode, is not reduced during this period.

On the next screen, you will be notified that CodeRush modifies the Visual Studio IDE:

I recommend you click the “See how prior to install” link to learn more. Then, select the destination installation folder and
accept the terms of the End User License Agreement, if you’re agree with them:

Installation progress is shown on the next screen. It may take up to several minutes to install, depending on the Visual
Studio versions you have installed:

31

After the installation process is complete, click on the Finish button, and you’re done:

If you have questions regarding this installer or need assistance with the installation process, feel free to contact Dev-
Express by writing to: install@devexpress.com or support@devexpress.com.

32

How to install multiple IDE Tools versions side-by-side

Different versions of IDE Tools can be installed together side-by-side on a single machine. Note, however, you can
have only one version running at a given time.

There’s a DXCoreVersion tool which allows you to switch between installed IDE Tools versions any time. You can
find the “DXCoreVersion.exe” tool in your bin folder which looks similar to this path:

“%Program Files%\DevExpress %YourVersion%\IDETools\System\DXCore\BIN”

For versions greater than v12.1, the path may look as follows:

“%Program Files%\CodeRush %YourVersion%\System\DXCore\BIN”

where %YourVersion% is a version of CodeRush (IDE Tools) you have installed.

Follow these steps to switch your tools version:

1. Close all the running instances of Visual Studio.
2. Go into the “CodeRush\System\DXCore\BIN” folder in the most recent install location. Actually, you could go to
the folder for any of the installs, but it is recommended to choose to go to the most recent one just in case there’s been
a fix or an addition to the version switch tool.
3. Run the DXCoreVersion.exe application:

4. The version selected in the dropdown box will be the latest version installed, not necessarily the active version.
Select the IDE Tools version you’d like to be active and running, then click the “Run” button.

33

5. In the log window you’ll see that the version of IDE Tools currently set up will be unregistered and the version you
selected will be registered (technically, this process doesn’t add or remove the installation from your system).

After the process is complete the message box will be shown with a message about your selected version. You may
save the log pressing the “Save Log…” button in case your switch process wasn’t successful or you’d like to send
the log to the DevExpress Support Services. You can use this tool to switch from any installed version you have to
any other version at any time. Also, it can be used for fast re-registering of a specific product version if you encounter
product installation issues.

How to install/uninstall IDE tools in quiet/silent mode

IDE tools installation can be launched in silent (without GUI and no questions asked) mode. Here’s a sample coma-
mand line:

IDETools-10.1.0.exe /Q /EMAIL:myaddress@company.com /CUSTOMERID:A1234 /PASSWORD:MYPASS /
DEBUG

Available switches:

/Q – quite mode without GUI, no questions asked.
/INSTALLPATH:<path> – allows you to specify an installation directory instead of %ProgramFiles%\Developer
Express .NET v10.1 used by default.
/EMAIL:email – email is your email address of your Client Center account.
/CUSTOMERID:id – id is your Security ID in the Client Center.
/PASSWORD:pwd - “pwd” is your Client Center password (case-sensitive).
/DEBUG – forces the log file creation.

Available arguments:

-U – uninstall/remove mode

Sample:

IDETools-10.1.0.exe /Q -U

How to temporally disable IDE tools (load manually)

It is possible to prevent the IDE Tools from being loaded automatically when starting Visual Studio.

To do this, please follow these steps:

1) In the Visual Studio IDE, select the Options… menu item in the DevExpress menu or press the Ctrl+Shift+Alt+O
key combination to invoke the Options Dialog.

2) In the tree view on the left, navigate to the “Core” folder.

3) Select the Startup options page.

Note that this page level is Expert, and will only be visible if the Level combo on the lower-left of the Options dialog
is set to Expert.

4) Activate the “Load Manually” option and click OK:

34

Another way to change this option is to tweak your Windows Registry key manually (via the regedit.exe tool):

HKEY_CURRENT_USER\Software\Developer Express\CodeRush for VS\%YourProductVersion%\LoadManually

where %YourProductVerions% is a version of the DevExpress IDE Tools you have installed, and the “LoadManually”
is the key of type string which value needs to be modified. Set the value to “True” (without quotes) if you would like
to prevent the automatic loading of the IDE Tools at Visual Studio startup. Note, if the registry key doesn’t exist you
need to create it manually using the Registry editor.

DevExpress support and knowledge base

Technical support is available in a variety of different forms. If you need technical support, please use one of the op-
tions listed below. Also, it is recommended that you review different help resources, provided by DevExpress, to help
you use their products, before contacting to Support Team.

•	 Support Center at http://www.devexpress.com/sc

This is the primary channel where you can get answers to your questions, report bugs and make suggestions. When-
ever you want to create a new issue (ask a question, post a bug or a request) they advise that you look through the
currently posted issues. A similar issue may already have been reported, so you’ll find a quick answer.

•	 support@devexpress.com

Sending an e-mail to this address is an alternative to using the Support Center. You can e-mail to submit a bug report,
request new features or ask any questions related to any DevExpress product.

35

36

Chapter 1. Duplicate Code Detection and Consolidation

Duplicate Detection and Consolidation overview

Duplicate code, or sometimes referred to as a clone, is a program source code fragment that is very similar to another
code fragment. A code clone may occur more than twice, either within a single program or across different programs
owned or maintained by the same group of developers. Code duplication is considered an expensive practice that
should be avoided because it complicates the maintenance and evolution of the software.

There are many reasons why duplicate code can appear in source code:

•	 Clipboard Inheritance. Copying and pasting code (and then modifying it as needed) is faster
and easier than writing similar code from scratch.

•	 Coding Guidelines. Sometimes the application or the team’s coding guidelines may call for a
frequently-needed code fragment to appear throughout an application, such as error handling, logging, or
wiring up user interface displays. The fragment will intentionally appear throughout the code to maintain
the style.

•	 Performance Enhancements. Some code clones may exist for perceived or real performance
gains. Systems with incredibly tight time constraints are often hand-optimized by replicating frequent
computations.

•	 Big Tasks, Little Time. It is generally difficult for a single developer to understand all the code
in a large software system. Pressure to ship features in a short period of time can incentivize the use of
example-oriented programming, where a developer copies and adapts existing code already developed.

•	 Design Patterns. Also, the repeated use of design patterns can lead to similar functionality spread
across a software system. For example, applying the composite design pattern more than once can lead to
multiple distinct classes, each implementing the Leaf and Composite parts. If these implementations share
similar properties to support navigation or search (such as access to the Parent or Children), this can lead to
similar code located in distinct classes, all designed to implement navigation/search/validation functionality
in a similar way, each a specialist for working with one of the different Leaf/Composite pairs.

•	 The Cost of Crossing Project Boundaries. Because it’s more expensive to consolidate duplicate
functionality across project boundaries, when functionality from one high-level project is needed in another,
the cost of consolidating in that moment (which could include an architectural change that needs approve)
acts as an incentive to duplicate the code and ensure its survival.

•	 Generated Code. Code generators can create significant quantities of code in a short period of
time, and sometimes that code includes repeated patterns of functionality.

•	 Unintentionally. Over time, the spec may call for two functionally similar blocks of code (for
example, find best and worst performers from a list), or it may be that two developers were involved in
implementing the similar logic, or perhaps it was one developer working at two distinct times in the code.
Regardless, it is possible to independently and unintentionally create functionally duplicate code.

Why do I need DDC?

Research in software maintenance has shown that many programs contain a significant amount of duplicate code, es-
timated to be somewhere between 5% and 20% [1]. Code duplication can significantly increase software maintenance
costs because it:

•	 Increases the time it takes for developers to get up to speed due to the additional code bulk.

37

•	 Makes the code harder to ready by obscuring the purpose of each duplicate.

•	 Forms an effective barrier to enhancing the software since similar changes must be made to all
the clones or the clones must consolidated into a single block of code before introducing change.

•	 Negatively impacts your company’s reputation due to update anomalies (e.g., a bug is fixed in
an update only to be rediscovered later by customers). Inconsistent updates (e.g., fixing only one of several
cloned bugs) can easily turn into unexpected program behavior, where the software only works some of the
time.

•	 Increase the amount of test cases needed, which can lead to more code duplication (in the test
cases).

So, we might be interested in finding and consolidating all duplicate code for the following reasons:

•	 Decreasing software maintenance costs. If one is sure that the code segment where a bug is
found occurs only once in the system, one can be confident that the bug has been eradicated from the syso-
tem.

•	 Repairing design-flaws. Code duplication may indicate design problems like missing use of
specific programming techniques, such as inheritance.

•	 Reducing code size. Refactoring duplicated code into a single code block reduces the overall size
of the code base and result in a faster compile.

Detection

Different algorithms have been proposed to detect duplicate code. One of the primary challenges in detection algo-
rithms is that it is not known beforehand which code fragments can be found multiple times. For example, in a long
method, only a subset of that method may be duplicated. Comparing all possible subsets of all methods against each
other means you’re talking about a huge number of comparisons that grows significantly as the solution size scales.

DDC uses an algorithm that is conceptually independent of the programming language of the source code being
analyzed, working at the level of abstract syntax trees (ASTs). This means it can find functionally duplicate code
inside the source code written in different languages (e.g. CSharp and Visual Basic). It scans through the code of the
entire solution and reports all duplicates found.

Duplicate detection ignores comments, whitespace, curly braces, variable and parameter names, etc., as you would
expect from a modern tool. However CodeRush’s duplicate detection algorithm goes beyond this to also find code
that is functionally similar. The level of similarity defines the size of duplicate code blocks found, whether it is an
entire method or a code block consisting of only a few lines.

Consolidation

A primary purpose of duplicate code detection is removing duplication from the system, through refactoring,
for improving the code quality of the software system. The process of eliminating duplicate code is
called code consolidation, and it consists of a single block of code that replaces all code duplications. With consol -
idation, you can decrease complexity, reduce potential sources of errors emerging from duplicated code, increase
readability, and increase system flexibility.

DDC allows you to consolidate most of the duplicate code found automatically, in a single click.

 [1] A Survey on Software Clone Detection Research. Chanchal Kumar Roy and James R. Cordy. September, 2007.

See also Mark Miller‘s blog – Duplicate Detection and Consolidation in CodeRush for Visual Studio.

38

Duplicate Real-time detection in Visual Studio

CodeRush Duplicate detection runs automatically inside Visual Studio IDE in a background thread. To enable it,
go to the Duplicate Code options page in the Options Dialog and toggle its availability. Note that you should also
have the Code Issues Analysis feature enabled. Once you enable detection, it starts scanning your solution for code
duplication. You will see an animated icon in the lower right corner visually indicating the progress of duplicate code
analysis:

Hover over this icon to see a message hint with additional information:

If the analyzed solution does not have duplicate code, the icon state changes:

If there is duplicate code in the solution, the following state of the icon is shown:

39

When you make changes to your source code, the analysis is suspended and it will be automatically resumed later,
according to your analysis settings. If you want to manually resume the analysis, click the Scan Now link in the Wait-
ing to Check hint:

Clicking the Options link will bring up the Duplicate Code options page.

Once the duplicate code is found, a code issue of a special type highlights the code duplication:

Hovering over the code issue will show you a Code Fix hint with the Duplicate Code item:

There are several interesting things in this hint related to the Duplicate Code code issue:

•	 Duplicate code label

•	 Navigation buttons

•	 The “Why?” link

40

•	 The “Report issue” link

•	 Consolidation fixes

Duplicate code label

Hover over this label to see the duplicated code highlighted in the Visual Studio code editor:

Navigation buttons

The “Next duplicate block” and “Previous duplicate block” buttons allow you to navigate between duplicate code
blocks of a single cluster, which represent two or more duplicate code blocks of a single piece of code that is du-
plicated. Clicking one of these two buttons will navigate to another duplicate code block, open a file if necessary
and show the Code Fix hint for this block with a mouse cursor positioned on the “Next duplicate block” button for
further navigation.

The center “See all duplicates” button opens the Duplicate Code tool window, where you can observe all duplicate
code found in the entire solution:

41

The “Why?” link

This link is shown when CodeRush is unable to offer an automated consolidation option. Consolidation of duplicate
code is very challenging, and not all duplicates can be easily unified. Hover over this link to see why consolidation is
not available, for example:

If you think CodeRush should be smart enough to consolidate this block of code and its clones automatically, click
the “Report issue” link and provide your feedback.

The “Report issue” link

Clicking this link will bring up the dialog for sending feedback to help DevExpress improve Code Consolidation
when it is not available:

The report will contain the duplicate code and a other details that may help better understand the challenge at hand.

Consolidation

If the duplicated code can be consolidated, you will see one or more target destinations where the code can be consol-
idated:

42

Hover over each target consolidation link to see the preview hint of code editor changes and a visual diagram to re-
view the duplicate code changes being made. In the consolidation hint, you can see how many duplicate code blocks
exist and their structure, and how many classes and projects are involved in the duplication. The hint also shows the
resulting target destination of the consolidated code. For example, consolidating to a new ancestor class in a new
project:

Click the link to apply the code consolidation at the selected location.

Hovering over the document bar will show you a similar hint with Duplicate Code issues:

43

Duplicate Detection Visual Studio tool window

The Duplicate Code tool window allows you to review the duplicate code found in your entire solution. The tool
window is available via the DevExpress | Tool Windows | Duplicate code menu item.

If the duplicate code analysis has been started, you will see the analysis results in the Clusters list on the left, oth-
erwise, you can click the “Run duplicate code analysis” button to perform the duplicate code search. This is what it
looks like:

44

The tool bar contains the following buttons:

Icon Name Description

 Run duplicate code
analysis

.Starts the duplicate code analysis for the currently opened solution

 Open duplicate code
analysis results

.Imports previously saved duplicate code analysis data

 Save duplicate code
analysis results

.Exports the duplicate code analysis data for this solution for further investigation

 Options .Opens the Duplicate Code options page

 Group by Projects .Shows projects in the Cluster list and groups duplicate code clusters by them

 Group by Files .Shows files in the Cluster list and groups duplicate code clusters by them

 Horizontal layout .Changes the code view layout to horizontal

 Vertical layout .Changes the code view layout to vertical

 Toggle log .Toggles output window visibility where the log messages are sent

Clusters and code views

On the left, you can see the list of duplicate code clusters. A cluster consists of two or more functionally similar code
blocks.

Clusters are sorted and indexed by the redundancy value in descending order. A redundancy is a measure of the
redundant code based on its duplication. The greater the redundancy value, the more code that can be removed when
the duplicated code is consolidated. Note that a cluster with a small duplicated code block may have a higher redun-
dancy value than a cluster of a bigger duplicate code block because the smaller block has more duplications then the
larger one.

Near the redundancy value, you can see how many duplicate code blocks are contained in each cluster and the num-
ber of classes these blocks reside in.

Selecting a cluster will display a number of duplicate code views on the right. Each code view has a header showing
class name, file name and project where each duplicate code block is located. The source code for each duplicated
code block appears below the header.

If you double click a cluster, the source code of the first duplicate code block will be opened in the Visual Studio code
editor. You will see the Code Fix hint shown for the opened code block, and the mouse cursor will be positioned on
the “Next duplicate block” button which allows you to navigate between duplicate code blocks.

Code views can be arranged horizontally or vertically – using the orientation buttons on the toolbar to change the
layout. In the horizontal layout, a code view can be collapsed by clicking the [-] button:

45

and then expanded by clicking the [+] button. Inside a code view, a light blue rectangle highlights the duplicated
code.

Output

This part of the window contains messages logged about the current analysis progress and operations performed and
the time each operation takes:

46

Duplicate Detection using the Stand-alone Application

CodeRush ships two standalone programs that do not require the Visual Studio IDE to be running for duplicate code
detection analysis:

•	 Duplicate Code Analysis windows app

•	 Duplicate Code Analysis console app

Both applications can be used outside of the IDE to find duplicate code inside a specified solution. These
applications are located inside the Plug-ins folder of your IDE Tools installation. You can find the windows
application in the Start menu as well:

DDC windows app

This windows app is similar to the DDC Visual Studio tool window. The window has the same user interface and
allows you to review duplicated code discovered in your solution. To start the stand-alone duplicate detection applica-
tion, from the Windows Start menu select Developer Express v2011 vol 2 | IDETools | DuplicateCodeApp. Once the
application is running, you can scan a solution by selecting File | Analyze Solution or by clicking the corresponding
toolbar item.

Once the solution is opened, you will see a progress bar indicating the analysis progress:

47

You can toggle the Output view in the window, to see more detail on the operations performed and how much time
they take.

The application contains several elements:

•	 Main Menu

•	 Tool bar

•	 Clusters list

•	 Code views

•	 Output

Main Menu

•	 File

o Analyze Solution – shows the Open File dialog so you can select a solution to analyze.
Once a file is selected, analysis begins immediately.

o Import – opens previously saved duplicate code analysis data for review.

o Export – saves duplicate code analysis data for further investigation.

o Exit – closes the application.

•	 View

o Clear – clears the duplicate code analysis results in the clusters tree list and all source
code views.

•	 Tools

o Options – opens the Options dialog, which allows you to specify the code analysis
settings, such as an analysis level.

Tool bar

The tool bar contains all important tool buttons for the duplicate code detection analysis:

Icon Name Description

 Analyze Solution .Shows the Open File dialog allowing you to choose a solution file for analysis

 Import .Loads previously saved duplicate code analysis data

48

 Export Saves the duplicate code analysis data for this solution.

 Options Shows the Options dialog with available duplicate code analysis settings.

 Show Projects Displays projects in the cluster tree list and groups clusters within each project.
Clusters that span across more than one project will appear multiple times in this
view.

 Show Files Displays files in the cluster tree list and groups clusters within each file. Clusters
that span across more than one file will appear multiple times in this view.

 Horizontal layout Changes the code view layout, arranging duplicates horizontally.

 Vertical layout Changes the code view layout, arranging duplicates vertically.

 Toggle log Toggles the visibility of the output window where analysis log messages are sent.

Clusters and code views

On the left, you can see the list of duplicate code clusters. This is the cluster tree list. A cluster represents two or more
blocks of source code that are duplicated within a solution.

A cluster in the list has an ordering number the redundancy value. A redundancy is a measure of the amount of code
that would be removed if all duplicates were consolidated. All clusters in the list are sorted by the redundancy value
in descending order. Near the redundancy value, you can see how many duplicate code blocks are in a cluster and the
count of classes these blocks reside in.

Selecting a cluster will reveal the corresponding duplicate code on the right. Each code view has a caption that shows
a class name, a file name and a project where a duplicate code block is located, and a view of the source code for each
duplicated code block.

Code views can be arranged horizontally or vertically – toggle the appropriate button on the toolbar to change the
layout. In the horizontal layout, code views can be collapsed by clicking the [-] button:

49

and expanded by clicking the [+] button. Inside a code view, a rectangle shows the code block that is duplicated.

Output

This part of the window contains messages logged about the current analysis progress and operations performed and
the time each operation takes:

There are two versions of this application for different .NET Framework versions: 2.0 and 4.0.

Console app

The console application is used within a command-line window and provides no visual UI. You can specify different
behavior by passing arguments in a command-line window. Here is the syntax:

DuplicateCodeConsole.exe solutionPath outputFile

where “solutionPath” is a path to the solution for duplicate code detection analysis and “outputFile” is a path to the
output file that will contain the resulting analysis data. This file can be opened in either the stand-alone Windows
application or in the Duplicate Code tool window.

After valid paths are provided, the application parses the solution and searches for the duplicate code, reporting
progress:

Parsing solution... Done in 55,2813345781978 sec. Searching for dupli-
cate code... Generating characteristic vectors... Generated 9050 vec-
tors in 0,0395699571568842 sec Removing empty clusters ... Done in
0,000371098271236394 sec Found 20 clusters Done in 0,785516491288943 sec

After the analysis is done, the resulting analysis data is saved to the file you specified in the command line in an
XML format. You can open this analysis data in the Duplicate Code Windows application or in Duplicate Code tool
window inside Visual Studio.

50

Duplicate Consolidation inside Visual Studio

The process of removing duplicate code is called code consolidation. The result of code consolidation is a single
code block that replaces a specific duplicated code in several locations (different files or projects). The resulting con-
solidated code block is functionally absolutely the same as all duplicated code blocks it replaces.

To apply the code consolidation, you can use the Consolidate Code provider. It is available when the editor caret is
positioned at a Duplicate Code issue via the CodeRush popup menu:

or through the Code Issues visual hints, such as Code Fix hint:

51

and the document bar hint:

If the Consolidate Code provider is not available, you can see why it is not available in the Code Fix hint by
hovering over the “Why?” link:

52

If you think that duplicated code can be consolidated, click the “Report Issue” link to provide feedback about your
expectations:

Once clicked, a special dialog appear for submitting feedback:

Consolidation locations

Code consolidation allows you to consolidate code at different locations. The code consolidation will suggest only
an appropriate code location, such as:

53

•	 the current class – if duplicate code blocks are residing in a single type

•	 the base class – if duplicate code blocks are residing in a single class hierarchy

•	 a new ancestor class – if duplicate code blocks are residing in types that can be inherited from a
new ancestor

•	 the helper class – if duplicate code blocks are residing in different classes that do not have a
common ancestor and a new ancestor cannot be created

•	 the existing class, where previous consolidation has been performed

You may also have different project location options: for the ‘helper class’ and ‘new ancestor class’ locations, it is
possible to choose whether to use the current project (if duplicate code blocks are residing in a single project) or
create a new one (if duplicate code blocks are residing in different projects), so source projects will reference a newly
created project:

If duplicate code blocks are residing in different projects and those projects reference other common projects, you can
choose one of the referenced projects to create a helper class in it and move the consolidated code there. Once you
have consolidated any duplicated code in a particular class (inside the current, new, or referenced project), you can
choose that class as a target location when consolidating the next duplicated code.

Preview hint

As you have already seen, hovering over the target location for consolidation in the Code Fix hint or CodeRush Pop-
up menu, will show you a preview hint with the changes being made to the current code and the visual diagram of the
duplicated and consolidated code hierarchy:

54

Depending on the duplicate code block count, their location (classes and projects) and target location for the consoli-
dated code, the hint will reflect and correspond to these parameters.

Consolidation in action

For example, a duplicated code may vary by different values used. Consider the following simple example of the
duplicated code – it is not real, but it may show how consolidation works here:

55

These two methods do the same thing: inside the ‘for’ and ‘foreach’ loops it writes several lines with certain values
to the Console. However, note the differences in the values and their different positions inside the code, e.g. passing
“1 + 2 + 3″ and “2 + 3 + 1″ as arguments. Consolidating such code will require replacing all differences in values
to parameters and pass the correct values as arguments to the resulting method. Also, because the parameters of two
duplicate code blocks have different types they should be consolidated to a common type, if possible. In this specific
case, the common type for both parameters will be the System.IEnumerable type. Here’s the resulting consolidated
code:

and the calling sides:

This is a just simple example with local differences, but there can be also other things involved in code duplicates,

56

such as different member references (dependencies), different types of parameters and fields, different project
boundaries, etc. So, the consolidation task is rather really complex, with lots of edge cases. The CodeRush Con-
solidation Engine can deal with all of these differences and create a single code that functionally is the same as all
replaced duplicated code blocks. If the code consolidation is not yet capable of removing a specific duplicated code,
you can always send feedback to DevExpress by clicking the “Report issue” link, so the Consolidation Engine will be
improved in the future.

Duplicate Detection analysis options

Duplicate Code Detection options are available at the Editor | Code Analysis | Duplicate Code options page in
the Options Dialog. Duplicate code options specify when detection analysis is activated and the analysis level. Here’s
what this page looks like:

Available options are:

[X] Analyze code for duplicates in a background thread

Specifies whether or not duplicate code detection analysis is enabled and available.

[X] When opening a new solution

Specifies whether or not duplicate code detection analysis should be activated on opening a solution.

[X] When source code files are added to or removed from the solution

Specifies whether or not duplicate code detection analysis should be activated on adding source code files or remov-

57

ing them to/from the current solution.

[X] When projects are added to or removed from the solution

Specifies whether or not duplicate code detection analysis should be activated on adding projects or removing them
to/from the current solution.

[X] After source code changes substantially, more than [] lines

Specifies whether or not duplicate code detection analysis should be activated when the specified number of source
code lines have been changed.

[X] After source code changes marginally (fewer than 25 lines), but [] minutes have passed

Specifies whether or not duplicate code detection analysis should be activated when a small number of source code
lines (less then 25) have been changed after the specified amount of time.

Analysis Level

Specifies the analysis level of the similarity of duplicate code blocks that must be found: whether small or large
blocks. Note that low level might require significant CPU power and memory for duplicate code detection analysis.

Duplicate Detection in CodeRush versus Code Clone Analysis in Visual Studio 2012

CodeRush Duplicate Code Detection (DDC) analysis runs in the background while you work in the Visual Studio
IDE. Visual Studio 2011 Developer Preview has a similar feature called Code Clone Analysis (CCA). Both features
find code duplications, so it is possible to undertake a brief overview of each feature and compare them. Please note
that this article was written using the Visual Studio 11 Developer Preview, and as such, certain functionality may
be subject to change before the final release. The version of the IDE Tools/CodeRush used for comparison is 11.2,
which is certainly subject to change.

UI & Integration

CodeRush DDC highlights code duplicates right inside the code editor:

58

It also has a special Duplicate Code tool window that allows you to review all code duplicates:

Visual Studio Code Clone Analysis does not highlight duplicates inside the code editor, but it has a tool window to
review all code duplicates:

59

Analysis speed

Measurements were taken on one of the open source projects that contains 86 projects, and its overall size is 70M
bytes.

First analysis run:

Time

VS Code Clone Analysis min 15 sec 19
(CR DDC inside VS (default analysis level = 4 min 45 sec 2
(CR DDC inside VS (analysis level = 1 min 32 sec 4

Second analysis run (after VS is reloaded):

Time

VS Code Clone Analysis min 0 sec 19
(CR DDC inside VS (default analysis level = 4 min 15 sec 0
(CR DDC inside VS (analysis level = 1 min 37 sec 3

As you can see, there’s some difference in the speed of analysis, especially in the second and subsequent analysis
runs.

Capabilities

Both features do the same thing – they analyze your code to find code duplicates. Let’s see what capabilities both
provide:

Visual Studio CCA CodeRush DDC

Configurable Analysis level No: always shows
 matches categorized
into Exact/Strong/
Medium/Week cate-
gories

 Yes, the analysis level can be set from 0 to 10th
level

Entire solution analysis *Yes Yes
Find Matching Clones Yes **No
Analysis exclusions ***For specific files For projects, folders, and files via two mouse

clicks
Consolidation No Yes

* code clones less than 10 statements long won’t be discovered when analyzing the entire solution
** planned for the future release
*** files can be excluded by creating a file in the project with a “.codeclonesettings” extension and then adding some
XML data to the created file to exclude the appropriate files in the project.

Consolidation

Because the primary purpose of duplicate code detection is removing code duplications from the system, it is
very important and useful to have a feature that does this automatically for you. CodeRush DDC has a Code
Consolidation engine that removes code duplications by replacing them with a functionally identical single block of
code. Other existing duplicate code analysis tools does not have such a capability at the moment.

The consolidation preview hint allows you to review the changes being made:

60

61

62

Chapter 2. Static code analysis and code issues technology

Code Issues technology overview

Code Issues technology (also known as Code Analysis) is essentially background static analyzer of the source code.
The code is analyzed during code writing and/or reading without compiling or executing the program.

One of the most prominent uses of a static analyzer is for code defect detection. While you’re working in the source
code, it will point out the code errors even before it’s compiled, and other specifics that can help improve the overall
quality of the source code. This can help you improve your coding practices, and learn new language technics.
Static-analysis techniques can also detect buffer overflows, security vulnerabilities, memory leaks, timing anoma-
lies (such as race conditions, deadlocks), dead or unused source code segments, and other common programming
mistakes.

There are different types of code issues this technology provides, such as errors, warnings, hints, dead code and code
smells. All of these issue types are displayed in different highlighting in the Visual Studio code editor, to visually
distinguish between them. Issues are also collected in the special Code Issues tool window, which is intended to
analyze code issues for the entire solution with filtering, sorting and navigation capability.

Many code issues can be easily fixed with the corresponding code fixes available in the Code Fix hint, shown right in-
side the code editor. Any issues can also be suppressed for different kinds of scopes like current class, current project,
solution or be completely disabled via a single mouse click.

The Code Issues technology is extensible, and it is easy to write your own code issue provider using the DXCore
plug-in. For example, you can implement style-checking issues intended to verify the compliance of a given source
code to your team coding style guidelines.

Code Issues types overview

There are different types of code issues that the Code Analysis technology provides. Each issue is highlighted with
the appropriate color, and has its own icon, depending on its type. These types are:

•	 Errors

•	 Warnings

•	 Hints

•	 Dead Code

•	 Duplicate Code

•	 Code Smells

Errors

Errors are highlighted with a red wavy underline:

Code errors indicate that the code is invalid. Errors will definitely lead to the corresponding compile-time errors.
Such errors indicate code defects (for example, syntax errors or rules violations of the programming language) that
must be fixed before the code can be compiled. Seeing errors in the code editor allows you to fix them before starting
the compile process, which may take significant time.

63

Examples of error code issues:

•	 Cannot create an instance of interface

•	 Static constructors must be parameterless

•	 Try statement without catch or finally

Warnings

Warnings are highlighted with an orange wavy underline:

Warnings indicate syntactically valid but very suspicious code. A warning indicates you’ve done something bad, but
not something that will prevent the code from being compiled. You should fix whatever causes warnings, since they
often lead to other problems that will not be so easy to find.

Examples of warning code issues:

•	 Catch block is empty

•	 Undisposed local

Hints

Hints are highlighted with a blue wavy underline:

Hints bring your attention to specific code blocks, and may suggest useful recommendations for their improvement
and refactoring. These recommendations can be completely ignored; it is up to you to apply or skip them.

Examples of code hints:

•	 Can initialize conditionally

•	 Field can be read-only

Dead Code

Dead Code issues highlight the source code in gray:

Dead code means unnecessary, inoperative code that can be, or better yet, should be removed. You can significantly
improve the source code quality by removing dead code. While the functionality won’t be changed, it will improve
the internal quality – the readability of the source code. This will help in maintenance by decreasing the maintained
code size, making it easier to understand the program, and preventing errors from being introduced.

There are several types of dead code, such as unused declarations (methods, properties, variables, parameters, return
values, event handlers, constants, enumerations, classes, interfaces), unreachable code or statement, unused files,
unused visual controls, etc.

Examples of Dead Code issues:

64

•	 Empty namespace declaration

•	 Redundant destructor

Duplicate Code

This type of a code issue highlights duplicated code. Duplicate code occurs two or more times, either within a single
program or across different programs. Code duplication is considered an expensive practice that should be avoided
because it complicates the maintenance and evolution of the software. The duplicate code is highlighted in purple.

Code Smells

Code Smells are highlighted in green:

A code smell is a hint that something might be wrong with your source code, but not necessarily. Smells are indi-
cators of where your code might be hard to read, maintain or evolve, rather than things that are specifically wrong.
A smell usually indicates that the code has low quality, for example: large complex methods, long parameters lists,
duplicated code, huge classes, inconsistent names, etc.

Sometimes a code smell issue may also detect logic errors. A logic error occurs when your program simply doesn’t do
what you want it to.

Examples of code smell issues:

•	 Case statement has incorrect range of integers expression

•	 Complex Member

You can tweak colors of code issues inside the Visual Studio Fonts and Colors configuration dialog.

Code Issues visual presentation

CodeRush code issues technology highlights found issues right inside the Visual Studio code editor with different
colors. There are two permanent bars with issue indicators to the left of the code editor, and to the right of the vertical
scroll bar. The third optional bar is intended to view solution wide analysis statistics for files and projects. This bar
appears at the bottom of the code editor, if enabled.

Let’s take a closer look at code editor highlighting and these three code issues bars.

As already noted, different types of code issues are highlighted with different color (which you can tweak). There are
two ways of issue highlighting:

•	 a wavy underline

•	 a gray font for a source code.

A gray font is used for the Dead Code issue type. Other issue types use different colored underlines, such as red, blue,
yellow, and green:

65

Hovering over these visual marks inside the code editor will show you the Code Fix hint:

This hint is an important part of visual presentation of code issues. It contains information about code issues and
different ways of their fixing. This hint allows you:

•	 to see the list of issues found for a particular block of code

•	 to see a brief description for an issue in the list when hovering over it:

•	 to correct an issue by clicking the available fix provider link:

•	 to suppress or disable an issue in a different kind of scopes by clicking the blue triangle:

•	 to navigate between neighboring code issues using two green navigation buttons:

66

If the Code Fix hint overlaps the source code, you can move it to another place by dragging using the mouse. The
hint can also be controlled using the keyboard. The following shortcuts are available:

Shortcut Description
 Arrow
keys

.Selects the next or previous fix link

Tab Navigates between the fix links and suppression trian-
.gles

Enter .Applies the selected fix to correct an issue
Esc .Hides the hint

Now, the three code issues bars.

The bar on the left marks the code issues inside of the active text view. So, the issues you see on the code editor
screen are “mirrored” to the left bar on the corresponding lines where issue is highlighted. Hovering over a mark will
show you the Code Fix hint.

67

The bar on the right consists of the two parts:

•	 document summary status on the top represented by a small icon indicating the issues state of the
current source file (text document)

•	 marks of issues for the entire source file (text document)

The document summary indicator shows whether the current source file contains issues. The following states are
available:

Icon Description
The current document is being checked.

The current document does not contain any issues.

The current document contains hints.

The current document contains warnings.

The current document contains errors.
If you hover over an icon – the hint with the status description appears:

The other part of the bar on the right shows code issues found inside of the entire source file. Hovering over this bar
will show you the Code Fix hint or a list of Code Fix hints:

68

These hints shown from this bar has two more options:

•	 temporarily make visible the block of code with an issue. Once you hover over an issue, the code
editor will be scrolled to the code with an issue. And if the hint is closed or mouse cursor is moved out of
the hint, the code editor will scroll back to the initial starting position (before the hint appeared).

•	 navigate to the issue in question by clicking on it. If you click on the hint, the code editor will be
permanently scrolled to the code block with an issue, so you can continue to work with it.

The last Project/File bar at the bottom of the code editor contains of two parts (lines):

•	 Solution files (at the top)

•	 Solution projects (at the bottom)

The project line lists all projects of the current solution. Project indicators are highlighted in one of the two blue
colors. Hovering over the project line will show you the name of the project.

The files line lists all files of the solution. The indicators representing files are highlighted with a color according to
its state. If the file contains errors, the indicator on the bar is highlighted in red, and so on. Hovering over the files
line will show you the File Info hint with brief information about the file: the size of the file, the number of lines, the
number of types and the count of warnings, errors and hints found in it:

If the solution contains hundreds or thousands of files, the optional Magnifier window is available for the files bar.
You can tweak the number of file indicators shown in this window and the minimal width of the file indicator when
the magnifier window must appear. This is what it looks like when both the File Info hint and Magnifier window are
shown:

Code Issues fixes and suppression

Code Issues can be easily fixed with the corresponding code fixes. The code fixes are operations that allow you to auw-
tomatically fix the issue by changing the source code, so the issue is no longer valid for the block of code in question.
The code fixes are refactoring or code providers assigned to the code issues as fixes.

There are several ways to fix an issue:

69

1. Code Fix hint

2. Zoom Window

3. Manually apply a fix

Code Fix hint

The hint shows not only the list of code issues, but when you hover the mouse over the issue highlighted in the code
editor, available code fixes. You can also see this hint when hovering over the left view bar. Clicking the link with
the name of the code fix will automatically fix the issue. Hovering over a link will also show you a preview hint of
changes being made after the fix is applied.

Zoom Window

This window appears when you hover the mouse over the marks on the right document bar. The window behaves as a
container of several Code Fix hints. Clicking the link works similarly to the Code Fix hint.

Manual Fixes

The fix for an issue can be applied the same way as all other refactoring and/or code operations. For example, from
the Refactor!/Code! popup menu:

70

Issues Suppression

If you don’t like some of the issues or don’t want them to appear in a specific source code, you can easily suppress
them for different scopes, such as:

•	 Solution

•	 Project

•	 File

You can also completely disable the issue. If you have disabled the issue, you can reenable it on the code issues Cata-
log options page:

To suppress an issue, click the blue triangle on the code fix hint, after which the Suppression menu appears with
several options available:

71

Once you have suppressed the issue, you are able to restore it on the Editor | Code Analysis | Issue Suppres-
sion options page:

Here, you can see the list of previously suppressed code issues and remove them from this list. After they are re-
moved, they appear again in the source code if appropriate. On this options page, you can also change the suppression
scope for the specific code issue.

The suppression settings are individual for every solution and are stored near the solution cache.

Code Issues navigation techniques

Analyzing the quality of your source code may take some time, especially if there are hundreds or thousands of code
issues. While checking the code issues, you have to navigate thought all of them inside the entire solution. Here are
available navigation techniques to switch between code issues:

72

1. Code Fix hint

2. Keyboard shortcuts

3. Code Issues tool window

Code Fix hint

The hint appears inside the Visual Studio code editor or at the left view bar when you hover the mouse at the code
issue highlighting. This hint has two green navigation buttons that allow you to switch between code issues inside the
active source file. You can navigate to the next or previous code issue:

If there is no next or previous issue – the corresponding button becomes disabled:

If you hover the mouse over one of these buttons, you can see the keyboard shortcuts currently assigned for the navi-
gation actions:

Shortcuts

If you hovered the mouse over the navigation buttons, you’ve already learned the keyboard shortcuts to switch
between issues of the current source file. The default shortcuts are: Alt+Page Down to go to the next issue and Al-
t+Page Up to go the previous issue. You may change these shortcuts on the Shortcutsoptions page of the Options
Dialog:

73

Once the shortcut is pressed, you will be navigated to the nearest code issue from the caret position and the Code Fix
hint will show up. Here you can apply the fix using other keyboard shortcuts (e.g. Tab and Enter):

Tool Window

The Code Issues tool window contains the list of code issues found in the entire solution:

The list requires using the mouse to switch between code issues. Once you double-click an issue, the appropriate

74

source file will be activated inside the IDE and the caret will be positioned right over the chosen code issue, after that
you can review the source code and make necessary changes if required. Bear in mind that using the navigation from
the tool window will also leave you with a system gray marker at the previous caret position, so you can easily move
back to the original location if necessary.

Code Issues tool window

The CodeRush Code Issues tool window shows a summary of code issues found inside the source code within an
entire solution. It is intended to help you overview, analyze, navigate and fix issues such as errors, warnings, hints
and dead code:

The window contains two customizable views: the tree list view and the code preview, a toolbar and a status bar, by
default. In the tree list view, you can see the list of issues found that are being populated live in real-time, without re-
compiling the code. If you double click a code issue in the tree list, the corresponding source code file will be opened,
and the editor caret will be positioned right on the code with an issue, so you can apply a code fix for it.

The overall number of code issues found and files being checked is shown on the status bar at the bottom of the tool
window.

In the code preview view, there is a syntax-highlighted code preview of the selected issue in the tree list. The tree list
is fully customizable, and you can arrange items and their view, using the tool bar buttons on the top of the window:

The toolbar has the following buttons in order of their appearance:

75

Icon Button Name Description
Sort by location Sorts the tree list items by an issues’ location. The location

is a source code range (coordinates), highlighted as an is-
sue inside a specific file. The issues on the top of a file (for
example, Redundant Namespace Reference code issue)
will more likely appear at the top of the list. The button is
available only when the list is shown as a plain list without
parenting nodes and issue types.

Sort by severity Sorts the tree list items by an issues’ severity, starting from
hits and going to errors. The button is available only when
the list is shown as a plain list without parenting nodes and
issue types.

Show code issues from active solution Shows code issues found inside entire solution.

Show code issues from active project Shows code issues found inside currently active project.

Show code issues from active file .Shows code issues found inside currently active file

Show parenting project nodes Organizes code issues by projects in the tree list.

Show parenting file nodes Organizes code issues by files in the tree list.

Show code issue types Organizes code issues by their types in the tree list.

Filter Allows you to filter the tree list using the Filter popup
dialog. See below for more info on code issue filtering.

Increase font Increases the size of the font used for the tree list view.

Decrease font Decreases the size of the font used for the tree list view.

(Landscape layout (code preview on right Sets the landscape layout: tree list on the left and code
preview on the right.

(Portrait layout (code preview below Sets the portrait layout: tree list on the top and code pre-
view on the bottom.

(References only (no code preview Removes the code preview, so it is hidden.
All buttons have the appropriate captions, so it is easy to distinguish between them. The Filter button has an
additional popup dialog that allows you to specify code issue filtering options for the tree list. Once you click it, the
following popup dialog appears:

76

In the center of the dialog, there’s a list of all code issues available, sorted alphabetically. Each item of the list has
a check box, which specifies whether a particular code issue should be shown in the main tree list view of the tool
window (if checked) or hidden (if unchecked). The special “{Select All}” item allows you to select code issues from
the filtered issues list.

Check boxes on the bottom of the Filter popup dialog allow you to check or uncheck a group of code issues by type
(errors, warnings, hints or dead code).

In the Find text box on the top of the dialog, you can search for a specific issue by typing its name. The View buttons
provide the capability to specify which types of issues are shown in the filtered list of code issues. The icon represents
the code issue type.

Code Issues configuration and options

CodeRush Code Issues configuration is available inside the IDE Tools Options Dialog and also in the Options Dialog
of the Visual Studio. The main set of options is located on the Editor | Code Analysis | Code Issues options page:

Available options are:

Option Name Description
Enabled Toggles the availability of the Code Issues analysis.
 Show a Code Fix hint when hovering over issues in the
code editor

Specifies whether a Code Fix hint should be shown
when the mouse cursor is hovering over issue’s
highlighting.

77

Enable solution wide analysis Specifies whether Code Issues analysis should
analyze all source files in a background together with
the opened file.

Check designer generated files Specifies whether or not to check compiler or design-
er generated files.

Enabled Project/File Bar Specifies the visibility of the Project/File Bar.
 Show magnifying window when file indicator width drops
below [X] files

Specifies the minimal number of pixels when
the Magnifier window appears.

Show [X] files in magnifying window Specifies the number of files shown in the Magnifier
window.

You can also toggle the Code Issues Analysis on or off on the DXCore Visualize Toolbar:

The other options, such as colors of the different code issue types underlining, are available inside the Visual Studio
configuration dialog. From the main IDE window, go to Tools | Options…, then Environment | Fonts and Colors:

In the “Display items:” list you can find the following Code Issues related items (see code issue types):

Item Caption Description
Dead Code Color of the dead code issues (gray font)
On-the-fly Error Color of the red wavy underlines (e.g. undeclared elements)
On-the-fly Hint Color for the blue wavy underlines (suggestions/hints)
On-the-fly Warning Color for the yellow wavy underlines (warnings)
Code Smell {light} Color for the green wavy underlines (code smells)

78

Code Smell {moderate} Reserved, not used.
Code Smell {severe} Reserved, not used.

For the all items above, you can change the “Item foreground” color option. For the “Dead Code” item you can also
change the “Item background” color property.

Code Issues overview

Code Issues hints for declaration and initialization

Here are a few simple code issues of a hint type (suggestion) for declarations and initializations.

Can combine initialization with declaration

Cause:

The declaration and its initialization can be combined into a single statement instead of two separate statements.
Combining an initialization and declaration may improve code readability.

Sample:

How to fix:

•	 Apply the Move Initialization to Declaration refactoring:

Can inline temporary variable

Cause:

The expression assigned to the temporary variable that is used only once can be inlined. Removing a temporary vario-
able may improve code readability.

Sample:

79

How to fix:

•	 Apply the Inline Temp refactoring:

Declaration can be a constant

Cause: If the initialized declaration does not change its value, it can be a constant. A constant differs from a variable
because once declared, the value assigned to the constant cannot be modified. Having constant declarations creates a
self-documenting and strong code by telling the developer that he/she is not allowed to change the value of the con-
stant variable, which can results in fewer errors. Additionally, constants improve performance over regular variables
in many cases, particularly when using integral types such as integer.

Sample:

How to fix:

•	 Apply the Convert to Constant refactoring:

80

Implicit variable can be used

Cause:

This code issue notifies a developer that an implicitly typed local variable can be used. Such variables provide a new
simplified declaration syntax that instructs the compiler to infer the type of a new variable according to its initial
usage. Converting a variable to an implicitly typed local variable may improve code readability.

Sample:

How to fix:

•	 Apply the Make Implicit refactoring:

81

Initializer can be used

Cause:

The instantiation of a variable and subsequent property assignments can be converted into a object initializer ex-
pression. Object initializers allow you to set the initial values of fields or properties of an object as part of the single
instantiation statement, which is more compact and may improve code readability

Sample:

How to fix:

•	 Apply the Convert to Initializer refactoring:

Can initialize conditionally

Cause:

This code issue may improve the efficiency of the code. It is shown if the initialization can be moved to an ‘else’
block of the following conditional statement. If the condition of the conditional statement is met, than the first
initialization is unnecessary. This issue is shown as a suggestion (hint).

Sample:

The method returns the current date and time on the computer. The ‘isUTC’ parameter specifies whether this method

82

should return date and time, expressed as the local time (if false) or as the Coordinated Universal Time (if true). If we
pass ‘true’ to this method the resulting var is initialized twice, which is inefficient.

How to fix:

Apply the “Initialize Conditionally” refactoring:

Notice that the resulting var is no longer reinitialized (if we pass ‘true’ to this method). In more complicated cases
with time-consuming initialization this may improve the overall code performance.

Code Issues hints for expressions

Here are the code issues for different expressions. If the fix is applied, following a hint it may optimize the code and/
or improve its readability.

Null coalescing operation can be used

Cause:

The null coalescing operation verifies the value of a variable for ‘nullness’. If the value is not equal to ‘null’, a
variable’s value is returned. If it is equal to ‘null’, a substitute value, provided as a second operand of the operation,
is returned. The null coalescing operation simplifies the syntax of the ternary operation, for instance. Converting an
expression to a null coalescing operation may be increase code readability.

Sample:

How to fix:

•	 Apply the Compress to Null Coalescing Operation refactoring:

83

Redundant String.Format call

Cause:

The String.Format call allows composing a string data, that combines other strings and referenced variable values.
If the String.Format call does not take referenced variable values, a simple string concatenation operation or even a
single string value can be used instead of String.Format. This may optimize the code and improve its clarify.

Sample:

How to fix:

•	 Apply the Remove Redundant Call refactoring:

Redundant ToString() call

Cause:

There are cases when the ToString() call is redundant. In these cases, the compiler automatically calls ToString(). If a
call ToString() is not required, a hint is shown suggesting you remove it.

Sample:

84

How to fix:

•	 Apply the Remove Redundant Call refactoring:

String.Compare can be used

Cause:

Strings can be compared using the equality operator ‘==’. However, this operator performs an exact, case-sensitive
comparison of two strings.. For better support of string comparison, the String.Compare call can be used. This code
issue of a hint type shows you that the equality operator can be changed into the String.Compare call.

Sample:

How to fix:

•	 Apply the Use String.Compare refactoring:

85

String.Format can be used

Cause:

String.Format can process typical strings and variable references. Sometimes, instead of concatenating these pieces
with a string concatenation operator, it might be better to use the special String.Format call for this purpose. This may
improve code readability and clarity.

Sample:

How to fix:

•	 Apply the Use String.Format refactoring:

Ternary expression can be used

Cause:

The conditional operator allows you to define a boolean condition and two expressions as a result of a boolean oper-

86

ation. Using the simplified ternary expression can improve code readability, because it allows you to compress if-else
statements to a single expression.

Sample:

How to fix:

•	 Apply the Compress to Ternary Expression refactoring:

Environment.NewLine can be used

Cause:

When working with strings that contain multiple lines of text, you have to add newline characters to your strings, so
each line is separated with a line break. Line breaks are often added by inserting a carriage return line feed escape
characters. This can cause cross-platform compatibility issues, because your code might end up being compiled under
Mono in Unix, for example.

The “Environment.NewLine can be used” CodeRush code issue shows a suggestion to convert escape characters
(“\r\n“) inside your code into the constant value defined in .NET Framework. Changing these strings to the Envi-
ronment.NewLine constant will, firstly, improve the code clarity, so you don’t have to use escape characters, and,
secondly, fix potential platforms portability issues – so, you don’t have to be concerned about such problems.

The Environment.NewLine is a static string property from the System namespace that is tied to the current executing
environment or platform. The property returns a line feed string that is appropriate to the current operating system:
“\r\n” for non-Unix platforms, or a string containing just a line feed (“\n“) for Unix platforms.

Sample:

87

How to fix:

•	 Apply the Use Environment.NewLine refactoring:

Nested code can be flattened

Cause:

This code issue shows a hint (suggestion) when the nested code structure can be simplified and unintended. This is
allowed by converting conditional statements into a guard clauses.

The practical reason for this is that it simplifies your reading of the code and reduces the apparent complexity. There
is no specific limit for the amount of nested code blocks, however, if you get your code nested too deep, most likely, it
must be refactored. In some cases, it’s better to validate all of your input conditions at the beginning of a method and
just bail out if anything is not correct. This follows the “fail fast” principle, and you really start to notice the benefit
when you have lots of conditions. You can have a series of single-level if-statement checks that check successively
more and more specific things, until you’re confident that your inputs are correct. The rest of the method will then be
much easier to write and follow, and will tend to have fewer nested conditionals.

Sample:

88

How to fix:

Apply the Flatten Conditional refactoring:

Code Issues hints for types and members

Here are the suggestions (hints) code issues which might improve the readability, clarity and performance of your
source code.

Initializer can be used

Cause:

Object initializers allow multiple property values to be set within a single object instance creation operation. They are
used in conjunction with existing object constructors. Object initializers provide a simplified syntax for specifying
initial values for one or more properties of an object. Using an object initializer may improve code readability.

Sample:

How to fix:

89

•	 Apply the Convert to Initializer refactoring:

Partial class has only single part

Cause:

A class, structure or interface can be marked as partial to allow its definition to be split between several files. If a type
is marked as partial and has only a single part, there is no need to mark it partial. Removing the partial keyword may
increase code clarity.

Sample:

How to fix:

•	 Remove the ‘partial’ keyword:

 Property can be auto-implemented

Cause:

If a property uses a simple backing store field and have the corresponding accessors to return the value of the field,
and set the value to the field, this property can be simplified to an automatically implemented property. This usual
syntax for declaring a read/write property includes a large number of lines of code for a relatively simple task. Con-
verting such a property into an auto-implemented property may increase code readability a lot.

Sample:

90

How to fix:

•	 Apply the Convert to Auto-implemented Property refactoring:

Redundant delegate creation

Cause:

In some cases, specifying the delegate type explicitly is redundant. For example, it is redundant when you subscribe
to an event, because the compiler will infer the type of the delegate automatically from the event handler creation
code.

Sample:

How to fix:

•	 Apply the Remove Redundant Delegate Creation refactoring:

91

 Redundant sealed modifier

Cause:

If a member marked as ‘sealed’ is located inside the class which is also marked sealed, then there’s no need to mark
a member as sealed, because the use of the sealed keyword on a class prevents the class from inheriting functionality
for all its members.

Sample:

How to fix:

•	 Remove the ‘sealed’ keyword:

 Type can be moved to separate file

Cause:

It is recommended to have a single class per source file. If a file contains several neighborhood classes, and a particu-
lar class can be moved to its own file (e.g., a type name differs from the file name), a hint is shown indicating that the
class can be moved.

92

Sample:

How to fix:

•	 Apply the Move Type to File refactoring to each class:

 Type name does not correspond to file name

Cause:

It is also recommended to have a class name that corresponds to the file name, where the class resides. If a class name
does not correspond to the file name, the hint is shown suggesting you to rename a file or a class to a single name.

Sample:

93

How to fix:

•	 Apply the Rename File to Match Type refactoring:

 Apply the Rename Type to Match File refactoring:

94

Redundant Constructor

Cause:

This code issue shows a hint (suggestion) that a redundant constructor can be safely removed. Redundant construcu-
tor is a public, parameterless constructors without any code inside of its body. This constructor doesn’t call base
type constructors and it is alone in the current class. The constructor is redundant because such constructors are
automatically generated by the compiler. Removing the redundant constructors may improve code readability.

Sample:

How to fix:

•	 Remove the redundant constructor by applying the corresponding Remove Redundant Construc-
tor refactoring:

•	 Add another constructor to the class, so the original constructor is no longer redundant:

Also, see the full list of code issues specific to constructors.

Member can be static

Cause:

Static members are part of a type and non-static members are part of an instance of that type. If you want to have a
shared state or a function between different instances of the same type, a static member will be helpful. This code
issue informs you about an instance member that can be converted into a static member.

Sample:

95

How to Fix:

•	 Apply the Make Member Static refactoring:

Can implement base type constructors

Cause:

The Can Implement base type constructor code issue of type hint suggests that you implement the constructors that
are missing for the current class, but exist in the ancestor (base) class.

For instance, once you implement your custom exception class derived from the System.Exception, you have to pro-
vide the full set of its constructors. Failure to provide all of the constructors of the Exception class can make it diffi-
cult to correctly handle exceptions. For example, the constructor with the signature “Exception(string, Exception)” is
used to create exceptions that are caused by other exceptions. Without this constructor, you cannot create and throw
an instance of your exception descendant that contains an inner exception, which is what managed code should do in
such situations.

The first three constructors of the Exception are public by convention. The fourth constructor is protected and
implements the custom serialization support, because the Exception class implements the ISerializable interface.

Sample:

96

How to fix:

The fix for this code issue is the Add Missing Constructors code provider:

After it is performed – it will leave you with all necessary constructors generated automatically:

A similar and alternative code issue to this one, is the “Base type constructors are not implemented” code issue,
which is not a hint, but an error. Also, see the full list of code issues specific to constructors.

Field can be read-only

Cause:

This code issue shows a hint (suggestion) on the fields which can be marked as read-only. When a field declaration
includes a readonly modifier, assignments to the fields introduced by the declaration can only occur as part of the
declaration or in a constructor (instance or static) in the same class. Read-only fields cannot be changed by other code

97

or the code from team members, thus making it less likely to be messed up by someone who doesn’t understand the
purpose of the code.

Sample:

How to fix:

The Make Read-only refactoring is a code fix for this issue:

Code Issues for anonymous methods and lambda expressions

We already reviewed the refactorings for anonymous methods and lambda expressions and know how to deal
with these language structures. Now its time to review what Code Issues for anonymous methods and lambda
expressions CodeRush Pro provides.

Delegate can be replaced with lambda expression

Cause:

98

Lambda expressions are simply an improvement to the syntax of anonymous methods. This code issue suggests you
that the anonymous method can replaced with a lambda expression.

Sample:

How to fix:

•	 If you prefer lambda expressions, you can convert an anonymous method to a lambda expres-
sion by executing the Compress to Lambda Expression code fix for this issue, which may improve code
readability:

Resulting code:

ForEach Action can be called

Cause:

This code issue suggests that the code block of the List iteration can be converted to an anonymous method which
can be passed as the Action delegate to the List.ForEach method. This may improve code readability.

Sample:

99

How to fix:

•	 Apple the Introduce ForEach Action code fix:

Resulting code:

Anonymous method cannot have ‘params’ parameter

Cause:

When the anonymous method contains a ‘params’ parameter, you will see an error in the code editor, because this is a
violation of the programming language specification.

Sample:

How to fix:

•	 Remove the incorrect ‘params’ parameter:

Lambda expression cannot have ‘params’ parameter

Cause:

This is the same language specification violation as the previous code issue. You will see an error, because lambda

100

expressions must have an unchanging number of parameters and cannot have a ‘params’ parameter.

Sample:

How to fix:

•	 Remove the incorrect ‘params’ parameter:

Lambda parameter has redundant type specification

Cause:

The type specifier to the lambda expression parameter is redundant and can be removed. Removing a redundant type
specification may improve code readability.

Sample:

How to fix:

•	 Apply the Remove Redundant Type Specification refactoring:

Code Issues of the dead code type for qualifiers

Here are some of the code issues of the dead code type that indicate redundant ‘this’ (‘Me’ in VB), ‘base’ (‘MyBase’
in VB) and type qualifiers.

101

Redundant base qualifier

Cause:

The only time the base qualifier should be used is when you have an overridden member with the same name in the
derived class, but you actually want to call the member in the base class. A keyword like ‘base’ does not make the
code readable and should be avoided in all cases unless they are indeed necessary.

Sample:

How to fix:

•	 Apply the Remove Redundant Qualifier code fix:

Redundant this qualifier

Cause:

The ‘this’ keyword refers to the current instance of the class. The keyword is most of the time technically redundant,
because a member is unique in most scenarios. However, there are situations where you must use the ‘this’ keyword,
for example to prevent an ambiguity between a member and a function parameter that has the same name as a mem-
ber. Another important thing to consider is that the ‘this’ keyword is removed by the compiler. So, it is actually down
to a personal preference or the coding standard in your team.

Sample:

102

How to fix:

•	 Apply the Remove Redundant Qualifier code fix:

Redundant type qualifier

Cause:

Namespaces qualifiers prevent conflicts between the names of classes by isolating the contents of each namespace. A
full namespace name qualifier is not required for a class when a corresponding using (or Imports in VB) statement is
declared. You can safely remove the namespace qualifier to improve code readability.

Sample:

103

How to fix:

•	 Apply the Remove Type Qualifier or Remove Type Qualifier (remove all) code fixes:

Can remove type qualifier

Cause:

This code issue is similar to the ‘Redundant type qualifier‘ code issue. The difference is that this one is shown even
when no using statement is declared to the namespace qualifier. Removing a namespace qualifier may increase code
readability.

Note that the code issue is not shown if the new using statement with the namespace qualifier will lead to the types
ambiguity error.

Sample:

How to fix:

•	 Apply the Remove Type Qualifier or Remove Type Qualifier (remove all) code fixes:

104

Code Issues – Empty namespace declaration

Cause:

This code issue shows a dead code, which is redundant. Empty namespace declarations don’t have any value, and can
be safely removed.

Sample:

How to fix:

•	 Remove the empty namespace declaration.

Code Issues – Unused type parameter

Cause:

This code issue of a dead code type shows type parameters to a generic type, or method definitions that are not refere-
enced within its scope, and can be removed. In a generic type or method definition, a type parameter is a placeholder
for a specific type that a client specifies when they instantiate a variable of the generic type. Removing the unused
type parameter may improve readability.

Sample:

How to fix:

•	 Remove the unused type parameters:

105

Redundant namespace reference

Cause:

The Redundant namespace reference code issue highlights unused namespace references that can be safely
removed in gray (dead code issue), which may improve readability.

Sample:

How to fix:

•	 Apply the Optimize Namespace References refactoring:

Options of the refactoring are also used for the Redundant namespace reference code issue. For example, you can
specify a list of references that won’t have an influence on the code issue. In other words, if you specify a reference
that should be kept (and that is actually unused) and there are no more unused references in the file – a code issue
won’t be shown.

106

Code Issues of the dead code type for members and blocks

Here are several of the code issues, which highlight redundant and unnecessary code blocks that may be safely
removed for improving code readability.

Empty event handler

Cause:

An event is the mechanism for a class that notifies its clients when something happens. Events provide add additional
methods (event handlers) to be triggered upon an external event. As an empty event handler does nothing, there is no
need for it. An empty handler can be safely removed, which will improve code readability.

Sample:

How to fix:

•	 Apply the Remove Empty Handler code provider:

Empty finally block

Cause:

107

A code inside a finally block is executed when a control leaves a try statement and is guaranteed to be executed
no matter what happens, including exceptions and return statements. An empty finally block does not make sense,
because nothing will happen when it receives a control. Thus, an empty finally block is redundant and can be safely
removed, which will improve code readability.

Sample:

How to fix:

•	 Remove an empty finally block (including a try block if there is no catch block):

Redundant private setter

Cause:

You cannot modify the value of a backing field inside the private setter outside of the current class. Also, if there are
no assignments to the property in the current class, it doesn’t make sense to declare a private setter at all. In this case,
you can safely remove the private setter to improve code readability.

Sample:

108

How to fix:

•	 Apply the Remove Private Setter refactoring:

Unused member

Cause:

A member which is not referenced anywhere (unused) in the code is useless and can be safely removed to clean up
the code and improve readability.

Sample:

109

How to fix:

•	 Remove the unused member.

Unused declaration

Cause:

Similar to the Unused Member code issue, this code issue highlights variables that are not used in the code.
Removing such variables will improve code readability.

Sample:

How to fix:

•	 Remove the variable its assignments, if any.

Redundant else statement

Cause:

The else statement is redundant when it doesn’t contain any code, and can be safely removed to improve readability.
The type of code issue is a dead code.

Sample:

110

How to fix:

•	 Apply the Flatten Conditional refactoring:

Redundant field initialization

Cause:

The redundant field initialization code issue of type ‘dead code‘ highlights unecessary initialization of fields that
can be safely removed (because the common language runtime initializes all fields to their default values, regardless
of their type). Value types are initialized to 0 and reference types are initialized to null. Explicitly initializing a field to
its default value is redundant, degrades performance and adds to maintenance costs.

When you expressly initialize your fields, the compiler creates code to set the value of the fields and includes that
code as part of your object initialization. When you instantiate an object using the new keyword, the following se-
quence happens:

1. Your fields are allocated

2. The fields are initialized by the CLR

3. The code for the object constructor is performed

The problem is that if you explicitly initialized your fields, the constructor code will initialize your vari-
ables twice. This is not a big deal in most cases, but if those objects are instantiated many times, the performance
impact may be noticeable.

Performing these kinds of tests when fields are initialized explicitly, shows the following result:

•	 Creating an object and not initializing fields ~1013 ms (100%)

•	 Creating an object and explictly initializing fields ~1124 ms (110%)

As you can see, there may be a noticeable performance hit.

Sample:

111

How to fix:

•	 Apply the Remove Redundant Assignment code fix:

Unused setter

Cause:

This code issue shows a dead code when there are unreferenced private property setters. Unused property setters of
private properties can be safely removed, which will improve code readability.

Sample:

112

How to fix:

•	 Apply the Remove Setter code fix:

113

Redundant Destructor

Cause:

Destructors are invoked automatically, and used to destroy instances of classes. The developer has no control over
when the destructor is called, because this is determined by the garbage collector. Redundant destructor is a an empty
destructor without any code inside, that can be safely removed.

Empty destructors should not be used at all. If a class contains a destructor, an entry is created in the “Finalize
queue”, controlled by the garbage collector. When the destructor is called, the garbage collector is invoked to process
the queue. If the destructor is empty, this just causes a needless loss of performance.

Sample:

How to fix:

•	 Apply the Remove Redundant Destructor refactoring:

Code Issues for Switch (Select) and Case statements

A switch statement executes logic, dependent on the value of a given expression (parameter). The types of values a
switch statement operates on can be boolean, enum, integral types, and strings. Each switch statement can contain
any number of case statements, but no two case constants within the same switch statement can have the same value.
Each case statement defines a value to compare against the original expression. You may also include a default label
following all other case statements. If none of the other choices match, then the default choice is taken and its state-
ments are executed. If there is no default label, control is transferred outside the switch.

CodeRush Pro provides several code issues specific to a switch statement (C#) or Select statement (VB) as well as its
nested case statements. These code issues are of type warning, dead code and code smell.

Empty case statement

Cause:

This code issue is shown when the Switch or Select statement is empty and can be safely removed. If no code is
executed inside the case statement, it is redundant.

114

Sample:

How to fix:

•	 Remove the empty case statement.

Default branch is missing

Cause:

This is a code issue of the warning type, no matter that the default label is optional. It is shown when the switch or
select statement is missing a default label which may be unintentional.

Sample:

How to fix:

•	 Apply the Add Default Case Branch code fix:

115

Case statements do not explicitly handle all enum values

Cause:

An expression of a case statement can be of the enumeration type. Enumeration types have a definite number of enum
elements. If the switch or select statement handles only a subset of the possible enumeration values it’s checking for,
the code issue will be shown because this may be a sign of incomplete code.

Sample:

How to fix:

•	 Apply the Add Missing Case Statements code fix:

116

•	 Add a default branch:

Case statement has incorrect range of integers expression

Cause:

This code issue is useful for the Select statement in Visual Basic, because case statements in VB can handle a specific
range of values, not only a single constant value. The range of the values is defined according to the language specifi-
cation using the “To” operator as follows:

“Case 20 To 30″.

However, if the range expression is specified incorrectly, the code issue of the code smell type is shown.

Sample:

117

The case statement in the sample actually specifies a single value “-10″, because the expression range is treated as a
mathematical minus operation, in other words: 20 – 30 = -10.

How to fix:

•	 Replace the incorrect integer expressions with the “To” operator:

Warning code issues for the IDisposable pattern

Here are two code issues of the warning type that might be helpful in detecting objects of a class that have not undisc-
posed. Such objects may lead to temporary unmanaged resource leaks.

Class should implement IDisposable

Cause:

This issue appears when a class contains fields that implement IDisposable, but the class itself does NOT implement
IDisposable.

Sample:

118

How to fix:

•	 Apply the Implement IDisposable code fix.

Fields should be disposed

Cause:

This issue appears when fields implementing IDisposable are inside a class that also implements IDisposable, but
those fields are NOT disposed.

Sample:

How to fix:

•	 Apply the Dispose Fields code fix:

119

Undisposed local

The Undisposed local code issue of the warning type highlights local variables that implement the System.IDispos-
able interface and are not explicitly disposed. The IDisposable interface was designed to provide a standard way to
release unmanaged resources by calling its Dispose method. If the object isIDisposable, it is a good idea to dispose of
it when you no longer need it, especially if the object uses unmanaged resources. These are resources that the .NET
garbage collector does not manage on our behalf and is unable to clean-up automatically. They include items such as
streams, files, database connections, handles and other operating system objects. If the memory and system resources
that they use are not properly released, a program may suffer from memory leaks or problems due to locked resourc-
es.

The Stream (from System.IO) and Font (from System.Drawing) classes are examples of managed types that access
unmanaged resources (in this case file handles and device contexts). If you hold a FileStream object, you should
dispose this object when releasing resources, because this may not be done immediately by the garbage collector.
Calling the Dispose method ensures that the unmanaged file handle controlled by the FileStream object is released as
early as possible. The writer FileStream object is not explicitly disposed, so you can see the Undisposed local code
issue:

Apply the Introduce Using Statement code provider, to fix it:

120

The code fix will create a using statement, which ensures that Dispose is called even if an exception occurs while you
are calling methods on the object:

Complex Member

The Complex Member code issue of the smell type highlights complex members. A complex member is a member
that may have too much code inside. The issue is based on a calculation of the Maintenance Complexity code
metric. Maintenance complexity is a measure the structural complexity of a node (and its children), and represents
how easy or challenging a method will be to understand and maintain. Scores closer to zero are simple. Small
methods usually score below 150, while large/complex methods will exceed 500.

Here’s the table of the ideal scores for this code metric:

When a member’s maintenance complexity exceeds a threshold of 800 points, you will see the member highlighted:

How to fix:

121

It is recommended to break down a complex member into smaller methods, using the Extract Method refactoring, for
example.

Code Issues specific to declaring types

The CSharp and Visual Basic programming language specifications have several restrictions on how type elements
such as a class, structure, and delegate are declared in the code. Let’s review code issues that demonstrate an incorrect
type declaration, and see the error before the compiler informs us about it when we build the code.

Cannot inherit from sealed type

Cause:

The whole point of sealed classes is that you are not supposed to inherit from them. That is why you are not allowed
to create descendants of a sealed class.

Sample:

How to fix:

•	 Remove the ‘sealed’ (‘NotInheritable’ in VB) keyword from the ancestor class if appropriate.

•	 If you inherit the new class to extend it with additional members, or you do not have access to the
source declaration of the sealed class, you can use the extensions methods instead:

Cannot inherit from special class System.ValueType

Cause:

The System.ValueType provides the base class for value types (structures). Because structures are implicitly sealed,
they cannot be inherited. Although ValueType is the implicit base class for value types, you cannot create a class that
inherits from ValueType directly.

Sample:

122

How to fix:

•	 Inherit a descendant of a different non-sealed type rather than the ValueType type:

Generic class cannot derive from Attribute

Cause:

An attribute decorates a class when compiled, but a generic class does not receive its final type information until
runtime. Since the attribute can affect compilation, it has to be completed at compile time, so a generic class can not
inherit from the Attribute class.

Sample:

How to fix:

•	 Remove the attribute from the current class declaration:

•	 Do not mark the current class as generic:

123

Cannot create an instance of abstract class

Cause:

The abstract classes may contain abstract members that are incomplete and must be implemented in a derived class.
The issue occurs because we have not overridden the abstract member to provide their implementation, so we can not
instantiate an instance of an abstract class.

Sample:

How to fix:

•	 Create a descendant implementation of the abstract class and instantiate it instead of the abstract
class:

Sealed class cannot be abstract

Cause:

The purpose of an abstract class is to provide a common definition of a base class that multiple derived classes can

124

share. But, as we just learned, we can not derive from sealed classes, so a class can not be marked as sealed and
abstract at once.

Sample:

How to fix:

•	 Remove the ‘sealed’ modifier if a class can be used as an ancestor for derived classes:

•	 Remove the ‘abstract’ modifier if a class does not contain abstract members:

Delegate cannot be marked static

Cause:

A delegate declaration is a type declaration that basically declares a method signature. That is why it doesn’t make
sense to make it neither static nor an instance.

Sample:

How to fix:

•	 Remove the static keyword from a delegate declaration and add a static field instead, if required:

See also the code issues for declaring variables and constants.

125

Code Issues specific for static classes

A static class can be used as a unit of organization for sets of utility functions that operate on input parameters and do
not have to get or set any internal data. These functions can be accessed without creating an instance of the class. In
this case, a static class can make your implementation simpler and faster because you do not have to create an object
in order to call its methods.

A good example of a static class is the System.Math class, which provides constants and static methods for common
mathematical functions.

You can use a static class as a convenient container for methods not associated with particular objects. A member of
such classes can be used to separate data and behavior that is independent of any object identity: the data and func-
tions do not change regardless of what happens to the object.

Having said that, there are some requirements necessary in order to declare static classes. CodeRush suggests severt-
al code issues for correct code writing when static classes declaration requirements are violated. These code issues
allow you to see an error due to declaring a static class before compiling the code.

Here they are:

Cannot create an instance of static class

Cause:

It is not possible to create instances of a static class using the ‘new’ keyword. Static classes are loaded automatically
by the .NET Framework Common Language Runtime when the program or namespace containing the class is loaded.
This code issue has an error type, because your code won’t compile.

Sample:

How to fix:

•	 Use the static class name instead, and access its member directly without initiating it:

126

Cannot inherit from static class

Cause:

Static classes are designed in a way that prevents inheriting from any class except System.Object. A static class im-
plicitly inherits from type Object, you can’t cannot explicitly specify a base class or a list of implemented interfaces.
Static classes are sealed by nature and therefore cannot be inherited.

Sample:

How to fix:

•	 Do not derive a class from the static class:

Cannot declare instance member in a static class

Cause:

When a class declared as a static, it is indicating that it contains only static members, so it cannot declare instance
members.

Sample:

127

How to fix:

•	 Mark the member as static:

Static class cannot be abstract and Static class cannot be sealed

Cause:

A static class may not include a sealed or abstract modifier. Note however, that since a static class cannot be instanti-
ated or derived from, it behaves as if it was both sealed and abstract.

Sample:

An abstract static class:

A sealed static class:

128

How to fix:

•	 Do not mark a static class as ‘abstract’:

•	 Do not mark a static class as ‘sealed’:

Static class cannot contain protected member

Cause:

A static class can only contain static members, which can be public or private. They cannot be marked ‘protected‘ or
‘protected internal‘. Since Static classes are sealed classes, and sealed classes can not be inherited, hence it can not
contain protected members, because protected members can not be inherited.

Sample:

129

How to fix:

•	 Change the visibility of the static member, e.g.,:

Code Issues for interfaces

An interface is a code structure that has no concrete members and similar to an abstract class. An interface can
contain public members such as methods, events, properties and indexers, but these members do not provide any
functionality. Instead, they define items that must be made concrete within all classes that implement this interface.
This means that an interface can be used to define what a class must do, but not how it will achieve it.

Interfaces are declared using several declaration rules: interfaces cannot have fields or constants, interface mem-
bers cannot have a definition, an interface instance cannot be created, etc. Most of these rules are covered by
the CodeRush Code Issues technology that allows you to correctly declare an interface and its members while writing
code.

Here they are:

Cannot create an instance of interface

Cause:

We cannot initialize an interfaces instance, because this is not allowed by the .NET Framework guidelines. If you try
to create an interface interface, you will see an error.

Sample:

How to fix:

•	 Instead, we can create an object instance that implements the interface:

130

Interface cannot contain constructors

Cause:

An interface cannot have constructors, because you cannot create an interface. Should there be a constructor in an
interface, an error message will be shown.

Sample:

How to fix:

•	 Remove the incorrect constructor.

Interface member cannot have a definition

Cause:

As I mentioned before, interfaces do not provide any functionality. That is why interface members cannot have a
definition. If you provide a definition of a member, an error is shown.

Sample:

How to fix:

•	 Remove the body of the member:

131

Interface events cannot have add or remove accessors

Cause:

An event in an interface cannot have add or remove accessors. Interface events must be declared without add or
remove accessors. This is a rule for interface events.

Sample:

How to fix:

•	 Remove the event accessors definition:

Interface expected

Cause:

This code issue shows an error when the structure is derived from a non-interface type, because structures can only
inherit from other classes by their nature and guidelines.

Sample:

How to fix:

•	 Do not derive structure from a class:

132

Cannot create an instance of interface

This code issue shows an error if there is an attempt to initialize an instance of a interface. Interfaces cannot be
instantiated, they contain only the signatures of methods, properties or events. The implementation of these members
is done in the class that implements the interface.

Code Issues specific for declaring variables and constants

In addition to code issues specific for declaring types, CSharp and Visual Basic language specifications have a few
restrictions on declaring constant or simple variable declarations. Having this issue in the code editor right in front of
a developer allows him to fix the issue immediately without compiling the project.

Constant cannot be marked static

Cause:

A const member is considered static by the compiler. Although constants are considered static members, a constant
declaration neither requires nor allows a static modifier. In other words, if a variable is marked as const, it is also
static and there’s no need to mark it static.

Sample:

How to fix:

•	 Remove the static modifier from the const declaration:

133

Cannot declare variable of static type

Cause:

A static class is basically the same as a non-static class, but there is one difference: a static class cannot be instantiat-
ed, because static classes are sealed. You cannot use the new keyword to create a variable of a static class. Creating
a variable of a static class is basically the same as creating a class that contains only static members and a private
constructor. The compiler will guarantee that instances of a static class cannot be created.

Sample:

How to fix:

Because there is no instance variable, you access the members of a static class by using the class name itself. Remove
the variable and access the type directly:

Array elements cannot be of static type

Cause:

The cause of this issue is the same as the cause of the previous issue about creating a variable of a static type. An ar-
ray of the static type does not make sense, since array elements are instances, but it is not possible to create instances
of static types.

Sample:

How to fix:

•	 Do not create an array of the static type and access the type directly:

•	 Make the type non-static if appropriate.

134

Code issues specific to declaring members

One of the goals of the Code Issues technology is to help you find mistakes when coding before compiling. This ine-
creases the coding speed and allows you to save time in the future when dialing with those mistakes. Let’s take a look
at code issues CodeRush provides specific to declaring members:

Member must declare a body because it is not marked abstract or extern

Cause:

The code issue has the error type, because it is not allowed to declare non-abstract and non-extern members without a
body. Non-abstract and non-extern members should have an implementation. This code issue is shown for properties
and methods.

Sample #1:

Sample #2:

How to fix:

•	 Add the body of the method:

•	 Add the body of the event accessor:

135

Extern member cannot declare a body

Cause:

This code issue is the opposite of the previous one. Highlights the member that is marked as an extern and that de-
clares a body at the same time as an error.

Sample:

How to fix:

•	 Remove the body of the extern member:

Destructor must declare a body

Cause:

Destructors are a special type of members, so they have a dedicated code issue of the same error type. Destructors,
like non-abstract and non-extern members, are also must declare a body.

Sample:

136

How to fix:

•	 Implement the desctructor:

Only class types can contain destructors

Cause:

It is not allowed to declare destructors in a type different from a class, such as a structure or an interface. This code
issue highlights destructors declared in the wrong type with an error.

Sample:

How to fix:

•	 Remove the descructor:

Member names cannot be the same as their enclosing type

Cause:

The code issue of the error type highlights members with the same name as their enclosing type, because member
names must not match the name of their enclosing type. Only type constructors can be named the same as their
enclosing type.

137

Sample:

How to fix:

•	 Remove the member type to make it a constructor:

•	 Rename the member:

Method must have a return type

Cause:

Methods can not be declared without a return type. For example, procedures that do not return a value should have
the ‘void’ return type. If the method does not have a return type and it is not a constructor, the method is highlighted
as erroneous. Only constructors should be declared without a return type specified.

Sample:

How to fix:

138

•	 Specify the member type:

Protected member cannot be declared in struct

Cause:

Protected members are not allowed inside structs because you can not inherit from a structure. This code issue has an
error type:

Sample:

How to fix:

•	 Change the member access modifier, e.g.,:

Protected member in sealed type will be private

Cause:

Sealed classes can not be inherited, so any protected member is treated as a private.

Sample:

139

How to fix:

•	 Change the member access modifier, e.g.,:

Indexer cannot be static

Cause:

Indexed properties are not allowed to be static. This code issue has an error type.

Sample:

How to fix:

•	 Remove the static keyword:

Property cannot have void type

Cause:

A property is a member that provides a flexible mechanism to read, write, or compute the value of a field, thus it
cannot have a void type. Properties are actually special methods called accessors (getter or setter) and they must have
a specific non-void type according to most language specifications.

140

Sample:

How to fix:

Change the type of the property, e.g.,:

Code issues specific to constructors

A constructor is a special class member that is executed when a new object is created. There are two types of con-
structors: instance constructors and static constructors. Instance constructors are used to create and initialize instances
of classes or structures. A static constructor is used to initialize a class itself. A static constructor is called automatical-
ly to initialize the class before the first instance is created or any static members are invoked.

All instance constructors implicitly include an invocation of another instance constructor immediately before the con-
structor-body if no constructor initializer is specified. There are two types of constructor initializers: a form base(),
which calls a base class constructor and a form this(), which calls another constructor in the current class. There must
always be a chain of constructors which invoke other constructors all the way up the class hierarchy. If an instance
constructor has no constructor initializer, a constructor initializer of the form base() is implicitly provided.

DevExpress CodeRush provides several code issues specific for constructors. Most of them are hints (or suggestions)
and others are errors. Code issues of an error type help you to avoid mistakes while declaring constructors inside
classes or structures. Code issues of a suggestion (hint) type may help you to make your code more efficient and
readable.

Here they are:

Constructor cannot call itself

Cause:

As I’ve said earlier, there must be a chain of constructors which invokes other constructors in the current class and/
or class hierarchy. It is meaningless for a constructor to call itself, because there is no need to call the same instance
initialization code. In fact, it would result in an infinite recursion if permitted. That is why a constructor cannot call
itself.

141

Sample:

How to fix:

•	 Remove the call to the same constructor:

Redundant base constructor call

Cause:

We already know that if no constructor initializer is explicitly specified, then a constructor of the form base() (param-
eterless) is implicitly provided. There is no need to explicitly specify the parameterless base constructor call. That
is why it is redundant and can be safely removed. Removing the redundant base constructor call may improve code
readability.

Sample:

How to fix:

•	 Apply the Remove Redundant Call refactoring:

142

Static constructors cannot have access modifiers

Cause:

Static constructors cannot be called directly, they are called automatically as written previously. That is why you can-
not include an access modifier (e.g. public, protected) when defining a static constructor. An access modifier is simply
redundant and not allowed by the CSharp language specification, for example. You will see an error code issue inside
the code editor when a static constructor has access modifiers.

Sample:

How to fix:

•	 Remove the access modifiers from the static constructor:

Struct cannot contain parameterless constructor

Cause:

Structs can have constructors just like classes. However, constructors and structs behave a bit differently from classes.
Structs can have instance constructors with one notable exception – they cannot have a user-defined default parame-
terless constructor.

Parameterless constructors are not necessary for value types, since the compiler, by default, neither generates a de-
fault constructor, nor generates a call to the default constructor, which simply sets the fields of the value type to their
default (zero) values. When an instance that has all of its fields zeroed is created, a user can, in some cases, then use
this instance without further initialization.

It is important to make sure that the all-zeroed state is a valid initial state for the value types. A default parameterless
constructor for a struct could set different values than the all-zeroed state which would be an unexpected behavior.
The .NET Framework therefore prohibits default constructors for struct. An error is shown when you have such a
constructor.

Sample:

143

How to fix:

•	 Mark the constructor ‘static’:

Virtual member call in constructor

Cause:

The order in which constructors are called is different from the order in which virtual methods are called. Calling
virtual methods during construction will cause the most derived override to be called, even though the most derived
constructor has not been completely run yet.

When an object is constructed, the object initializers run in an order from the most derived class to the top base class,
and then constructors run in an order from the top base class to the most derived class. Objects being constructed do
not change their type during initialization, but start out as the most derived type, with the method table being generat-
ed for the most derived type. This means that virtual method calls always run on the most derived type. If you invoke
a virtual method in a constructor, and it is not the most derived type in its inheritance hierarchy, then it will be called
on a class whose constructor has not been run yet, and therefore may not be in the correct state to have that method
called. That is why calling a virtual method can produce unexpected results.

Sample:

144

How to fix:

•	 Remove the virtual member call from the constructor:

•	 Do not mark the invoked member ‘virtual’:

Constructor must declare a body

Cause:

The Constructor must declare a body code issue shows an error if there is a constructor without a body.
Constructors are similar to usual methods and whenever a class or struct is created, its constructor is called.
Constructors should always declare its body to properly initialize a class or struct.

Sample:

145

How to fix:

•	 Declare the body of the constructor:

See the full list of code issues specific to constructors.

Static constructors must be parameterless

Cause:

A static constructor is used to initialize any static data, or to perform a particular action that needs performed once
only. Parameters are not allowed for static constructors.

Sample:

How to fix:

Remove the redundant parameter:

See the full list of code issues specific to constructors.

146

Base type constructors are not implemented

This code issue is an alternative code issue to the “Can implement base type constructors“. The different between
these two is in their type – one is an error and another one is a hint. When the current type doesn’t implement non-de-
fault constructors from a base type the “Base type constructors are not implemented” error is shown.

Consider the following example, where you can see this code issue:

Here we have two classes – Person and Customer. The Person class has a single constructor that takes one parameter
of type string. The Customer class, on the other hand, doesn’t have any constructors, and the compiler will generate
the default one – a public constructor with no parameters. This default constructor will call the default constructor
of the base class, which simply doesn’t exist, and the source code won’t compile in this case. Thus, we have to
implement at least missing constructors from the base class – the code issue is shown in this case:

How to fix:

•	 Apply the Add Missing Constructors code provider:

147

See the full list of code issues specific to constructors.

Code Issues specific to partial methods

A partial method declaration has two parts: the declaration itself and an implementation. Both parts of a partial
method can be located in a single class or in different parts of a partial class. You can use partial methods in the code
and implement them later if required. If you do not supply an implementation for a partial method, its signature is
removed by the compiler.

There are several conditions that are applied to partial methods, such as:

•	 Partial methods must be void

•	 Signatures of both parts of partial methods must match

•	 Access modifiers are not allowed for partial methods

•	 Partial methods must be declared in partial classes

•	 etc

You don’t have to remember all these conditions if you have the CodeRush code issues feature turned on. When
the rule of the partial method declaration is violated, code issues will show you an error or a hint, and you can fix it
before you compile the code. These code issues are:

Partial method cannot have access modifiers or the virtual, abstract, override, new, sealed, or extern modifiers

Cause:

If a partial method has an invalid modifier (e.g., virtual, abstract, override, new, sealed, extern, or an access modifier)
you will see an error in the code editor, because partial methods cannot have these type of modifiers.

Sample #1:

148

Sample #2:

How to fix:

•	 Remove the incorrect modifiers:

Partial method cannot have out parameters

Cause:

Out parameters are not allowed for partial methods. If a partial method is declared with ‘out’ parameters, you will see
an error.

Sample:

How to fix:

149

•	 Completely remove the ‘out’ parameter:

•	 Do not mark the parameter as ‘out’:

Partial method must be declared within a partial class or partial struct

Cause:

Partial methods can only reside inside a partial class or a partial structure, otherwise, an error is shown.

Sample:

How to fix:

•	 Mark the class ‘partial’:

Partial method has only single part

Cause:

150

When the partial method has only a single part without a declaration, it does not need to be declared as partial. This
code issue has a hint type.

Sample:

How to fix:

•	 Remove the partial keyword:

Abstract member cannot be private

This code issue shows an error when an abstract member with the private visibility keyword is found. Abstract memd-
bers are incomplete, and must be implemented in a derived class. That’s why abstract members can not be private –
they must be visible in a derived class.

Code issues for virtual members

As you probably know, if a member is declared with the ‘virtual‘ keyword, derived classes can override the imple-
mentation of this member. In a virtual member invocation, the run-time type of the instance for which that invoca-
tion takes place determines the actual member implementation to invoke: whether it is a base virtual member or an
overridden member from a derived class. The virtual member is declared like an instance member with addition of a
‘virtual‘ keyword to its declaration.

The peculiarity of virtual methods defines several other rules for their declaration. If you break these rules, you will
see the error when you compile your source code. To help you declare the virtual methods correctly, CodeRush sugt-
gests several code issues that allow you to write the code for virtual member declaration without making mistakes.
Here they are:

151

Virtual member cannot be private

Cause:

Virtual members must have a visibility greater than ‘private’ because they may be overridden in derived classes. If a
member has a ‘private‘ modifier, it is not visible to descendants. You will see the error when a member is marked as
‘virtual‘ and has a ‘private‘ visibility keyword at the same time.

Sample:

How to fix:

•	 Change the ‘private’ visibility to ‘public’, for example:

Virtual member cannot be declared in sealed class

Cause:

When the class is sealed, it cannot contain virtual members, because sealed classes cannot be inherited by other class-
es. Methods marked as ‘virtual‘ inside the sealed classes will show as an error.

Sample:

How to fix:

•	 Remove the ‘virtual’ modifier from the member, if appropriate:

152

•	 Remove the ‘sealed’ modifier from the class, if appropriate:

Virtual member cannot be declared in structures

Cause:

Virtual members are only allowed in types that can be descended from. Because you cannot inherit from a structure,
you cannot declare a virtual member inside of it.

Sample:

How to fix:

•	 Convert the class to a structure, if appropriate:

•	 Do not mark the member as ‘virtual’, if appropriate:

153

In addition to the code issues for members marked as ‘virtual‘, there are similar code issues for members marked as
‘abstract‘ and ‘override‘.

Code issues for overridden members

Overridden members (that include an ‘override‘ keyword) provide a new implementation of a virtual or an abk-
stract member with the same signature. Compile-time errors occur when member override rules are violated. To
declare an overridden member according to the language specification without violating its rules, CodeRush suggests
several overridden-specific code issues.

Here they are:

Override member cannot be marked as new

Cause:

An overridden member cannot be also marked as ‘new‘. Members marked with a ‘new‘ keyword, explicitly hide a
member inherited from a base class. This is incorrect, because overridden members provide their own implementation
of a member inherited from a base class and replace the base-class version. An error is shown for members marked as
an ‘override‘ and ‘new‘ at the same time.

Sample:

How to fix:

•	 Remove the ‘new’ keyword, if appropriate:

154

•	 Remove the ‘override’ keyword, if appropriate:

Override member cannot be marked as virtual

Cause:

An overridden member cannot also be marked as ‘virtual‘, because you can override the member marked as ‘over-
ride‘ in derived classes the same way as virtual members. So, the ‘virtual‘ modifier is redundant in this case. You will
see an error for the overridden virtual member.

Sample:

How to fix:

•	 Do not mark the overridden member as virtual:

Override member cannot change access rights

Cause:

The visibility of overridden members must match inherited visibility of the base member that is being overridden. In
other words, an overridden member cannot change the accessibility of the base member. However, if the overridden
base member is ‘protected internal’ and it is declared in a different assembly than the assembly containing the over-
ride member, then the override method’s declared accessibility must be protected. An error is shown when different
visibility modifiers are set for an overridden member and its base member.

Sample:

155

How to fix:

•	 Do not change the access rights of the overridden member:

Cannot override an inherited sealed member

Cause:

The sealed member cannot be overridden according to the language specification.

Sample:

156

How to fix:

•	 Mark the member as ‘new’ instead of ‘override’:

Member cannot be sealed because it is not an override

Cause:

The ‘sealed’ keyword is only permitted on overridden members. An error us shown for members marked as ‘sealed‘
but not overridden.

Sample:

How to fix:

157

•	 Mark the sealed member as ‘override’ as well:

•	 Mark the member as ‘new’ instead of ‘sealed’:

Code Issues specific to extension methods

Extension methods allow developers to expand existing types without having to sub-class, recompile or modify the
original type. They were introduced as a feature of CSharp version 3.0 and Visual Basic version 9.0. Such methods
are just like static methods invoked by using instance method syntax.

You can declare extension methods only in public static classes (C#) or Modules (VB). To declare an extension meth-
od in C#, you specify the keyword this as the first parameter of the public static method, for example:

1

2

3

4

5

6

7

public static class Extensions

{

 public static int ToInt32
(this string s)

 {

 return Int32.Parse(s);

 }

}

158

In Visual Basic you have to specify the Extension() attribute from the System.Runtime.CompilerServices namespace.
The first parameter in an extension method definition specifies which data type the method extends, for example:

1

2

3

4

5

6

Public Module Extensions

 <Extension()>

 Public Function ToInt32(s As String) As Inte-
ger

 Return Int32.Parse(s)

 End Function

End Module
There are additional rules for syntax of declaring extension methods. CodeRush suggests a few code issues that ale-
lows you to correctly write them and check its syntax before compiling the code. All code issues are of the error type,
because your code won’t compile if you see them.

Here they are:

Parameter modifier ‘this’ should be the first parameter of extension method

Cause:

An extension method’s first parameter must include ‘this’ modifier in CSharp.

Sample:

How to fix:

•	 Make sure that the parameter with ‘this’ modifier is declared as the first parameter of the exten-
sion method:

159

Extension method cannot have a parameter array used with ‘this’ modifier

Cause:

The first parameter to an extension method cannot be a parameter array.

Sample:

How to fix:

•	 Make sure that the parameter with ‘this’ modifier is not declared as a param array:

Extension method cannot have a pointer parameter used with ‘this’ modifier

Cause:

The first parameter to an extension method must not be of pointer type.

Sample:

How to fix:

160

•	 Remove the pointer specifier from the parameter with ‘this’ modifier:

Extension method must be defined in a non-generic static class

Cause:

The class holding extension methods must be static and must not be generic.

Sample:

How to fix:

•	 Make the class non-generic, if appropriate:

Extension method must be defined in a top level static class

Cause:

The class holding extension methods must be top level and cannot be nested.

Sample:

161

How to fix:

•	 Define the class that contains the extension method as a top-level class, e.g.,:

There are could be other code issues, such as “Extension methods can be called only on instances values” or “A
reference to System.Core assembly is missing for declaring an extension method”. However, it is very easy to write
your own code issue by creating a new plug-in for DXCore. Read about creating your own code issue using the Co-
deIssue provider DXCore control to learn more.

Code Issues specific to operators

An operator is a member that defines the meaning of applying a particular expression operator to instances of a class
or structure. Three kinds of operators can be defined: unary operators, binary operators, and conversion operators. All
operators have must be declared according to the language specification.

For example, C# allows you to overload operators by defining static member functions using the operator keyword.
Not all operators can be overloaded, and others have restrictions. For example, the signature of an operator should
consist of the name of the operator and the type of each of its formal parameters, considered in left to right order. The
signature of an operator specifically does not include the result type.

CodeRush includes several code issues that make it possible to declare operators without violating the operator decla -
ration rules at the coding stage.

Here they are:

162

Operator cannot be abstract

Cause:

Operators must always be implemented. It is now allowed to mark operators with an ‘abstract‘ keyword. If an opera-
tor is marked as an ‘abstract‘, the error is shown.

Sample:

How to fix:

•	 Remove the ‘abstract’ modifier:

Operator cannot have the ‘params’ parameter

Cause:

Operators must have an unchanging number of parameters. You cannot have an undefined number of parameters for
an operator by using the ‘params‘ keyword.

Sample:

How to fix:

•	 Remove the ‘params’ parameter:

Operator must be declared static and public

Cause:

According to the language specification, operators are declared as a static member with a ‘public‘ visibility modifier.

Sample:

163

How to fix:

•	 Mark the operator member as static and public:

Operator must declare a body

Cause:

Operators not marked with the external modifier must declare a member body. Operators without a code body will be
highlighted as an error.

Sample:

How to fix:

•	 Declare the body of the operator:

Overloaded unary operator takes one parameter

Cause:

Implicit and explicit unary operators must accept a single parameter. If unary operator takes more than one parameter,
an error is shown.

Sample:

164

How to fix:

•	 Remove the redundant parameter, e.g.,:

Code Issues specific to C# and VB language keywords

We are going to review the CodeRush code issues dedicated to C# language limitations for the following keyo-
words: ‘base’, ‘this’, ‘yield’, ‘params’ and ‘Me’, ‘ParamArray’ keywords in Visual Basic. Here’s a brief overview of
keywords:

The ‘this’ (C#) or ‘Me’ (VB) keyword is used within a class’ code to refer to the current instantiated object.

By using the ‘base’ keyword, a derived class can access members of the base class. Calling the base class members
from within an overridden member can be used to combine functionality.

The ‘yield return’ and ‘yield break’ keywords are used in an iterator block to yield a value to the enumerator object or
enumerable object of an iterator or to signal the end of the iteration.

The ‘params’ (C#) or ‘ParamArray’ (VB) keywords specify a parameter array declaration which indicates that any
number of parameters of the indicated type may be used in the method call, allowing for optional parameters.

Here are the code issues provided by CodeRush specific to the keywords above.

Keyword this (Me) is not valid in a static member

Cause:

The ‘this’ keyword refers to an object which is an instance of a type. Since static members are independent of any
instance of the containing class, the ‘this’ keyword is meaningless and therefore is not allowed.

Sample:

How to fix:

•	 make the initial member non-static by applying the Make Member Non-static refactoring:

165

•	 remove the ‘this’ keyword and use the name of the current class instead:

Keyword base is not valid in a static member

Cause:

This is a similar code issue as above, when static members may not reference members of the base class.

Sample:

How to fix:

•	 make the initial member non-static by applying the Make Member Non-static refactoring.

•	 remove the ‘base’ keyword and use the name of the base class instead if appropriate:

•	 create an instance of the base type and call the required member if possible:

166

The params parameter must be the last parameter in a formal parameter list

Cause:

The ‘params’ keyword defines an optional array of a variable number of parameters (arguments). There can be only
one argument with the ‘params’ keyword, and it must appear at the end of the argument list.

Sample:

How to fix:

•	 move the ‘params’ parameter to the end of the parameters list;

•	 remove the ‘params’ parameter modifier.

The params parameter must be a single dimensional array

Cause:

The ‘params’ keyword defines an optional array of a variable number of parameters. The ‘params’ keyword must
describe a single-dimension array according to the language specification.

Sample:

How to fix:

•	 make the ‘params’ parameter a single-dimension array;

•	 remove the ‘params’ keyword specifier.

167

Cannot yield in the body of a try block with a catch clause

Cause:

Yield statements are not permitted inside a try block with a clause. This occurs because there are problems imple-
menting the correct behavior of the iterators in the compiler.

Sample:

How to fix:

•	 move the yield statement outside of the try block.

Cannot yield in the body of a catch clause

Cause:

Yield statements are not permitted inside a catch clause body.

Sample:

How to fix:

•	 move the yield statement outside of the catch clause body.

Cannot yield in the body of a finally clause

168

Cause:

Yield statements are not permitted inside a finally clause body.

Sample:

How to fix:

•	 move the yield statement outside of the finally clause body.

Try statement without catch or finally

Cause:

This code issue shows an error if a ‘try’ statement doesn’t have a ‘catch’ or ‘finally’ statement. The try block must be
completed, whether with catch or finally blocks.

The try block contains the guarded code that may cause the exception. The block is executed until an exception is
thrown or it is completed successfully.

The catch block is used to take a control when any or a specific exception has been thrown.

The finally block is useful for cleaning up any resources allocated in the try block, as well as running any code that
must execute even if there is an exception. Control is always passed to the finally block regardless of how the try
block exits.

Sample:

How to fix:

169

•	 Add the missing catch block:

•	 Add the missing finally block:

•	 Add the missing catch and finally blocks:

Control cannot leave the body of a finally clause

Cause:

Returns are forbidden in finally clauses by the compiler. A compiler error will occur in case of a return statement

170

inside a finally block, and refuse to let you write such potentially ambiguous and confusing code. The purpose of a
finally statement is to ensure that the necessary cleanup of objects happens immediately and always. In other words, it
is designed for releasing all locks and resources and cannot leave the block until finishing the cleanup task.

Sample:

How to Fix:

•	 Remove the return statement from a finally block:

Undeclared element

Cause:

Highlights identifier references to local variables, fields, method, properties, classes, structures, interfaces and every-
thing that is not yet declared.

Sample:

171

How to Fix:

•	 Apply the Declare XXX code providers, e.g.:

Format item index too large

Cause:

In the String.Format call you can specify any number of arguments and the corresponding format items, where those
argument values will be inlined. When the corresponding argument in the call is absent, the FormatException will
be thrown (Index (zero based) must be greater than or equal to zero and less than the size of the argument list). The
compiler does not validate the format items, so this may lead to errors in your application. This code issue allows you
to avoid such errors by highlighting format items with an incorrect index.

Sample:

How to Fix:

•	 Remove or correct the index of the format item:

172

173

174

Chapter 3. Code-generation templates

CodeRush Code Templates overview

CodeRush code templates allow you to generate large code blocks on the fly with just a few keystrokes. The use
of code templates dramatically decreases the code writing time, because it’s not necessary to type the entire block of
code manually. The Templates library shipped with CodeRush contain lots of code templates for most code blocks
and regular coding structures including regions and comments.

There are several basic things to know about templates:

Template expansion

Template expansion is the resulting code or text generated after a particular template is expanded. The expansion can
be of any-size (e.g. thousands lines of code) and can be interactive (e.g. you can interactively change specific parts
and navigate between them in the expansion).

You can think of a template expansion as a ready code block like a member (e.g. a method or property), a statement
(e.g. if, for, foreach, switch, etc) or an expression (e.g. an equality comparison, a value or property assignment). The
Templates library contains hundreds of code templates for regular code blocks for all supported programming lan-
guages. Of course, you are able to create your own templates with ease.

Due to the context-sensitive nature of templates, a single template may be expanded differently depending on the
current environment and conditions (context).

Template name

The abbreviation (name) used to identify the template and its expected expansion. СodeRush has its own templates
language that is pretty easy to learn and understand. When you know the templates language and expand templates
for code generation, your coding speed is increased significantly. The name of the template can contain one or more
characters.

Template key

The keyboard shortcut that is used to expand the template. When you type the template name in the code editor and
press the Template key, the template name is replaced with its expansion.

The Space bar is used by CodeRush for the maximum coding speed by default. Some templates may use an alterna-
tive key that is a Shift+Space. Both template keys are configurable. You can setup your own template key (like Tab,
for example) if any templates interfere with your coding habits.

Code Templates samples

Here are example of the simplest code templates:

m – expands into a method inside a body of a class:

175

f – expands into a for loop inside a body of a member:

sw – expands into a switch statement inside a body of a member:

Due to the context-sensitive nature of templates, the ‘sw’ template can be expanded differently. For example, if the
Clipboard contains a variable name of the Enumeration type (e.g. System.DayOfWeek), you will get the following
code generated:

176

Most of the code templates from the CodeRush Templates Library have short names (m, f, sw) and must be protected
from an unexpected expansion with a correct context set. For example, if you prefer to use a single-letter variable
name when you declare it and then press the Space bar, the template with the same name will not be expanded:

However, in other situations (with a different context) the template will be expanded as expected:

177

If you see unexpected template expansions, you might refer to the “Resolving templates conflicts” topic where you
can learn how to avoid unexpected template expansions.

Templates language and learning basics

CodeRush code templates are easy to understand and learn. One of the easiest ways is to dock the CodeRush Traint-
ing window inside the Visual Studio IDE. This window shows you the available templates for the current context. For
example, if the editor caret is inside a namespace, the window will show you the following templates suggestion:

As you see, the first letter (highlighted in red) of the type declaration is used as a template name. If you’d like to
declare an interface, you need to type the letter ‘i’ inside a namespace:

This is some kind of a rule for template naming – use abbreviations or mnemonics. In our sample, the first letter of
the type is used. If the letter is already used for some template (e.g. “Enum” and “Exception”), the second letter is

178

used to name a template instead.

Here are advanced examples of template names:

•	 ea – EventArgs

•	 eh – EventHandler

•	 os – object sender

The template name usually sounds like the template expansion. Consider the following examples:

•	 rt – return true:

•	 sn – set null:

•	 inrf – if null, return false:

•	 inr0- if null, return zero:

•	 cc – Create Constructor

179

These samples show that the following grammatical structures are common in CodeRush code templates:

•	 noun

•	 verb noun

Once some templates are used several times, you may acquire a habit to use those ones, because it is one of the fastest
ways to write different kind of code blocks. And when you write code fast, you safe your time.

Dynamic templates and dynamic lists

Template dynamic lists make a single code template universal and dynamic. For instance, a template for a variable
declaration can be configurable on the fly by specifying its type. In other words, a template can be expanded
differently depending on the selected dynamic list. A dynamic list contains a list of possible template alternative
expansions (types when used with a variable template) for a single template.

Here are some of the standard dynamic lists:

•	 System .NET types (e.g., System.Boolean, System.Char, System.Int32, System.DateTime, Sys-
tem.Exception, System.IO.StreamReader, etc.)

•	 Generic Types with one param (e.g., System.Collections.Generic.List)

•	 Generic Types with two params (e.g., System.Collections.Generic.Dictionary)

•	 WPF Types (e.g., System.Windows.Media.Color, System.Windows.DependencyObject)

•	 etc

Each dynamic list has a caption, variable name and a comment. The variable name identifies a dynamic list and is
specified for a static template to make it dynamic. When you create a dynamic template, a variable name of the dy-
namic list is used in combination with the static template mnemonic as follows:

TM + DLVN

where:

•	 TM – Template Mnemonic

•	 DLVN – Dynamic List Variable Name

Several dynamic lists may have the same variable name for identification but different captions for better dynamic list
organization on the Dynamic Lists option page in the Options Dialog.

180

A dynamic list contains entries with Key and Value fields. A Key specifies a dynamic entry mnemonic name used in
combination with the static template mnemonic. To expand a dynamic template, use the Template Mnemonic (TM)
with a dynamic entry Key name. A Value is the entry value used in the template expansion. Consider the following
dynamic list entries:

Key Value
c System.Char
i System.Int32
s System.String
\ Paste the Clipboard content
/ Insert the current type name
? Insert the current method return

type
Now, remember the ‘m’ template for methods. Combining the ‘m’ mnemonic with the Key dynamic list entries, we
can expand the following methods:

mc – a method returning a value of the char type;
mi – a method returning a value of the integer type;
ms – a method returning a value of the string type;
m\ – a method returning a value of the type on the Clipboard;
m/ – a method returning a value of the current type;
etc.

Here, a single template ‘m’ can have as many different expansions as dynamic list entries that exist. Imagine that
other templates may reuse this dynamic list and dynamic list entries are configurable and extensible. This makes the
CodeRush templates collection grow dramatically reflecting the number of available code templates.

Don’t forget that you can add dynamic lists not only on the Dynamic Lists option page, but also right from the
code editor window. Right-click the type declaration name or a type reference and select the Use Type In Tem-
plates… menu item:

181

Then, specify the dynamic list entry mnemonic:

And you are done! Now, you can use this mnemonic in combination with all other existing standard and custom code

182

templates. Custom mnemonics are added into the corresponding Custom Types dynamic list.

A great helper to remember static and dynamic template is to dock the CodeRush Training Window, which lists all
available code templates in the current context.

Templates option page

The Templates option page is required to control your collection of built-in and custom CodeRush code templates.
When you open the Templates option page, CodeRush will locate the last template you used by default. This is an ex-
cellent way to explore and learn how templates are built. When a template expands, if you want to see how it is built,
just bring up the Template options page and the last template expanded will be displayed. Here is what it looks like:

Templates are stored in folders (categories). Each category has a configurable name and a comment. You can also
specify the Action Hint caption and its color for each particular template category. Click the Test button to see what it
will look like:

183

The Templates list shows a plain list of templates included into the selected folder and sub-folders.

Near the category name you can find a checkbox which enables or disables the entire folder with templates. To re-
name a category or template, double-click it in the main tree. A folder may contain nested folders for better template
organization.

On the top of the option page there is a Search text box which allows you to find templates by name (abbreviation) or
by its content (expansion). Click one of the two buttons near the text box to search in the preferred way:

Under the Search text box there are tool buttons to create a new nested folder, to create a new code template, or delete
a folder or template. Plus, there are two navigation button for navigating by the history of visited templates and fold-
ers backwards and forwards. All buttons have tooltips to learn more about their purpose:

Clicking the New Category button will show you a dialog where you can type the name of the new nested category
that will be added inside the selected category:

184

If you’d like to create a non-nested Category in the root, use the context menu for this task. A context menu on a
folder looks like this:

Clicking the New Root Category shows a similar dialog as a New Category:

The other context menu items are:

Menu item Description
New Template… Shows a New Template dialog allowing you to create a new template with the

desired name.
New Root Category… Shows a New Root Category dialog allowing you to create a new template with

the desired name.
New Category… Shows a New Category dialog allowing you to create a nested category for the

currently selected folder.
Enabled Toggles the Enabled state for the selected folder.
Move to Root Makes the selected nested folder the root folder.
Export Folder… Allows you to export the selected folder.
Import Templates… Allows you to import previously exported templates.
Delete Removes the selected category.
Paste Context Sets the previously copied Context to all templates inside the selected folder.
Collapse all nodes Collapses all folder nodes.

Of course, code templates are stored inside the folders. A template has a configurable name, a comment, an expan-

185

sion, a context, and numerous options. Often, templates have alternate expansions (different versions of the template
bound to the same character sequence). Alternate expansions are indicated by a special icon in the list and are differ-
entiated by their context which appears in the tree view:

If you see alternate expansions, look at the contexts to see which one of those expansions will be expanded. Alternate
expansion contexts are evaluated in the order you see them in the list, and often a list of alternate expansions will end
with a template that has no context defined. That means that it will expand if none of the previous alternate expansion
contexts were satisfied.

Here is what the templates configuration page looks like when a particular template is selected:

On the top of the template configuration page, there is a Case-sensitive option which specifies whether or not the

186

name of the template is case-sensitive. A comment is used to identify and describe the template. For instance,
the What Happened window uses this comment when a template is expanded:

The Expansion text edit contains the primary template content. The result of a template is composed in this text area
by adding the usual text, text commands and/or string providers. It also has several tool buttons to navigate between
alternate expansions of a template, to add or remove alternate expansions, or to set their priority by moving an alter-
nate expansion up or down:

The Expansion is the most important part of a template. The result of a template is composed in this text area by
adding the usual text, text commands and/or string providers.

The next set of tool buttons provides a quick way to insert most important text commands. Other commands are listed
in the Command combobox:

If you see an orange text inside a template expansion, this indicates a call to another template (known as a template
alias). You can right-click the template editor to display a menu to jump to any template aliases referenced inside the
active template:

187

An expansion context menu also contain the following menu items:

Menu item Description
Insert Alias… Shows the Select Template dialog which allows you to choose a template that

will be used as an alias.
Extract Template… Allows you to select a part of the template expansion and extract it as a new

template. This option will show you a small dialog where it is required to enter a
new name for the template.

Undo Performs a simple undo operation which reverts back the last changes to the
template expansion.

Jump to XXX alias Navigates to the alias in question.
Insert TextCommand… Shows the Select TextCommand dialog where all text commands are listed and

can be filtered.
Insert StringProvider… Shows the Select StringProvider dialog where all string providers are listed and

can be filtered.
Cut Cuts the selected text from the template expansion text edit.
Copy Copies the selected text from the template expansion text edit.
Paste Inserts the text from the Clipboard into the template expansion text edit.
Delete Removes the selected text from the template expansion text edit.
Select All Selects the entire context of the template expansion text edit.

Under the template Expansion text edit, you can specify the advanced options for a template:

[] Auto double equals (“==”)

Specifies whether or not to insert an additional equals ‘=’ character. This might be useful for languages like CSharp
where the double equals operation is used to compare values.

[] Auto line terminator

Specifies whether or not to append a line terminator (a semicolon in C#, C++) to the resulting expansion.

[] Suppress formatting

Specifies whether or not to disable the automatic code formatting for this template, so it will be expanded “as is”.

[] Suppress the last character if present in code

Specifies whether or not to suppress the last character if the same character exists in code.

[] Multi-file template

Specifies whether or not a template will be expanded into multiple files, so a special multi-file undo will be created in
order to undo those multi-file expansions.

Another important part of a template is a context. A context specifies the conditions when a particular template is
available and can be expanded.

Additional options include:

•	 A template trigger key indicating whether it is a primary key, a secondary key or either.

188

•	 Dependent Namespaces. The list of namespace references (e.g., System.Windows.Forms) which
is required for the types from the template expansion. Namespace references will automatically be added to
the corresponding usings/Imports section of the file where a template has been expanded.

When you add new templates or alternate expansions, or organize your custom templates, you can use the templates
context menu and find a few useful options there:

Some of the menu items are the same as the menu items inside the Category context menu, but there are also addi-
tional items specific to templates:

Menu item Description
Create alias… Creates a new alias for the selected template. Shows a dialog where an alias name

should be specified.
Create duplicate… Creates a copy of the selected template with the specified name.
Move to -> Moves the selected template to a different folder chosen from the popup menu.
Copy Context Copies the context of the selected template for further insertion in another template or

a category.
The templates and categories are stored inside their own XML files with a specific file-format. These files are separat-
ed by languages, e.g.:

Templates.CSharp.xml
Templates.Basic.xml
Templates.JavaScript.xml

Dynamic Lists option page

Dynamic lists are configurable on the Dynamic Lists option page. The page is language-dependent, so you can create
and use language-specific dynamic lists. Here is what it looks like:

189

The option page composed of two parts:

•	 The list of available dynamic lists for the selected language.

•	 The list of dynamic list entries for the selected dynamic list.

Most of the available built-in dynamic lists are common for all languages. So, they are listed under the *Neutral*
language.

You can add a new dynamic list by clicking the New button under the list of dynamic lists. The following dialog
appears:

190

Dynamic list has a name (caption), variable name (identifier) and a comment (description). The ‘This list holds .NET
types’ options specifies whether or not the new dynamic list contains system .NET types. If checked, the resulting
types, once expanded, will be simplified by removing an extra namespace name.

Once a new dynamic list is created, you can add new dynamic list entries to it. An entry has a Key (mnemonic) and
Value fields. Specify both values and click the Add button. The Replace button allows you to modify an existing
entry. The Delete button removes the selected entry.

A dynamic list can also be context sensitive. Click the Show Folder Context button to specify the context for the
current dynamic list. The standard context picker UI will be shown:

191

Of course, you can modify and extend any existing dynamic lists on this option page as well.

Resolving code template conflicts

Sometimes, you may find unexpected code template expansions when you typing code. This may happen when
the template expansion key is bound to the Space Bar. Because this is a key used very often and there are tens of
thousands of code templates; a complex contexts system, something may go wrong, especially if you prefer one or
two key identifier names which may correspond to existing template abbreviations.

There are several approaches to resolve the unexpected template expansions:

•	 Change the Expansion Key to Tab instead of Space Bar (use FrictionFree settings scheme) on
the Shortcuts option page. Bear in mind that, in this case, you will lose numerous automatic and essential
code template expansions like “if”, “while”, “for”, “switch”, etc. These code blocks are automatically
completed with parens and braces with the code templates expanded by the Space Bar.

•	 Enable the What Happened (Feature UI) window which will alert you on each code template
expansion. This will allow you to choose what templates must be always available and what templates must
never be expanded (disabled).

192

•	 Once a code template is expanded, open the Templates option page. The last expanded template
will be selected. Here, you can:

o Delete the code template if you don’t need it;

o Change the trigger key to Secondary key (e.g., Shift+Space);

o Disable the entire template category by unchecking the folder where a template resides.

Importing and Exporting code templates

In case you want to share your custom code templates with others, you can easily export them. As recommended,
custom templates should be stored in a separate folder. You can export the entire folder. Simply right-click the folder
you wish to export on the Templates option page and select the corresponding item:

The standard file saving dialog will appear allowing you to select the target location and the file name. The file name
will be automatically composed from the active language and the parent folder names. The extension of the exported
file will be “.xml”, e.g.:

CSharp_Declarations_Variables_System.xml

To import templates on a destination computer, open up the Templates option page, right-click any item in the list of
templates and choose the “Import Templates…”:

193

Then, choose the previously exported templates file.

When you import the templates from a file, the following dialog may appear:

This means that the importing templates category with the same name already exists. You have two choices:

•	 replace the existing templates if they exist in the imported category;

•	 rename the imported category name.

Choose your option and click OK to import templates. Then, click OK or Apply on the Options Dialog to save the
templates.

194

Standard Templates Library

The standard templates library contains more than one thousand static code templates designed to help you realize
any coding requirements. Templates are organized by categories. For instance, there are over 25 root categories for
CSharp language on the Templates option page, such as:

•	 ASP.NET

•	 Attributes

•	 Comments

•	 Declarations

•	 Directives

•	 Expressions

•	 Graphics

•	 Patterns

•	 Program Blocks

•	 Regions

•	 Testing

•	 Text

•	 WCF

•	 etc

Each programming language has its own set of categories and templates. You can import and export the template
categories, and add your own categories with custom templates.

With the dynamic lists capability, the number of code templates can total in the tens of thousands. Having learned
the template language, it is easy to remember and write code using templates very quickly.

Here are some basic code templates from the library you can start with.

Type Declarations

Type declaration templates make it easy to generate classes, structures, interfaces, enumerations, etc. They are avail-
able in the corresponding context (condition), e.g., on an empty line inside a namespace.

Mnemonic Declares
c Class
i Interface
s Struct
d Delegate
e Enumeration

195

a Abstract class

x Exception
class

Member Declarations

Member declaration templates allow you generate new methods, properties, fields and events.

Mnemonic Declares
m Method
p Property
v Variable
ev Event

Note that the ‘v’ template may declare not only fields, but also local variables and parameters depending on the
current context. In combination with the dynamic list of standard types, you can specify the desired type of a member
using an additional type specification mnemonic:

Mnemonic Type
o object
b Boolean
c Char
i Int32
d Double
s string
u UInt32

…etc

Loops and blocks

Code templates for quick generation of loops such as ‘for’, ‘foreach’, ‘while’, ‘do’ and other code blocks like ‘if’,
‘switch’, ‘try/catch’ etc.

Mnemonic Loop or block
f The ‘for’ loop
fe The ‘foreach’ loop
w The ‘while’ loop
dw The ‘do/while’ loop
if The ‘if’ block
sw The ‘switch’ block
tc The ‘try/catch’ block

tcf The ‘try/catch/finally’
block

…etc

196

Returning values

Code templates for generating a return statement with the desired return value.

Mnemonic Return value
rn null
rt true
rf false
r0 zero
r1 one
r-1 -1
rth this

‘r single-quoted
character

“r double-quoted string
Note that the ‘r’ template will execute the Smart Return feature. This feature allows you to quickly select the return
value from the suggested values (e.g., local variables).

You can see the full collection of code templates for each language on the Templates option page.

Smart Constructor – Generating advanced type constructors in three keystrokes

The Smart Constructor CodeRush feature allows you to add constructors to the current class or structure, and pass
type members, like fields and properties for initialization through its parameters. Creating a constructor is as simple
as just typing three keys: “cc & Space”:

The Smart Constructor feature is based on the CodeRush Templates Engine, that’s why it is so simple to execute.
The “cc” code template is specially dedicated to this feature, and the Space key simply expands the template, by
default. The template mnemonic (cc) is easy to learn, when you know that it means the “Create Constructor” (cc).

If the active type has members, such as fields and/or auto-implemented properties, the Smart Constructor allows you
to choose any of them for initialization inside the constructor, using the “Parameters to the constructor” dialog, for
example:

197

You can use the mouse cursor or the Space key to check or uncheck the object in the list. When you are done with
selecting members, press the Enter key to commit your changes or the Esc key, if you changed you mind on creating
a new constructor. Those items that have a check will be initialized through parameters to the constructor when
committed, for example:

By default, Smart Constructor generates an XML doc comment with a standard summary description, which is
configurable, of course. All settings for the feature are available on the Editor | Text Commands | Smart Construc-
tor options page in the IDE Tools Options Dialog:

198

Here, on this page, you can specify the following options:

•	 Whether to show the “Parameters to the constructor” dialog

o Show always

o Show only when there are more than [X] members, where you can choose X number

o Never show

•	 The sort mode inside the “Parameters to the constructor” dialog:

o By declaration position will list member in the order as they appear in the code

o By name

o By type will sort member by its type (e.g. String, Int32, etc)

•	 Whether to generate XML doc comment and its default summary description

•	 Whether to generate default constructor for serializable types, for example:

199

Show Visual Basic code… »

•	 Whether to generate read-only properties for the selected private fields, for example:

200

•	 Whether public fields from the base type should be listed in the “Parameters to the constructor”,
for example:

201

Creating code templates overview
Creating CodeRush code templates is easy. They are being created on the Templates options page in the Options Dio-
alog. The Templates options page is an excellent way to explore and learn how templates are built. When a template
expands, and you want to see how it is built, just bring up the Template options page and the last template expanded
will be displayed. I recommend maximizing the Options dialog and collapse the options tree view on the left by click-
ing those tiny blue rectangles that appear when you hover over the area between the tree view and options page area:

Templates are organized into categories. There are dozens of built-in categories in the CodeRush templates library, so

202

it is recommended to create your own root folder for newly created templates. If you create your own folder, you can
easily share it among other developers or other computers after its export. Categories can also be enabled or disabled
by clicking the checkbox to the left of the category name.

Before you start creating templates, make sure you have chosen the correct language on the bottom of the Options
dialog. Remember, that templates are language specific – so it is important to choose the correct language. Then, let’s
create our root category, where all new templates will be stored. To create a new root category, right-click anywhere
on the templates categories list, and choose “New Root Category…”:

Type the name of the category and hit Enter or click OK:

Once the root category is created, we can add new templates in this category by clicking the corresponding button on
the tool bar or right-clicking the category and choosing “New Template”:

203

Type the name of the template, preferably according to the Templates language or something unique:

Now, it’s time to write a template expansion. An expansion can contain the following:

•	 Plain text. A plain text is expanded as is. The text typed in the Expansion area is inserted without
modification.

•	 String providers. String providers are used like string functions returning some calculated or
hard-coded string value like current date, current file name, new guid, etc.

•	 Text commands. Text commands are like inline procedures that execute some code performing
an action like moving the caret, dropping a marker, creating a new file, adding an assembly reference, open-
ing a dialog – everything you want. The standard text commands library contain a lot of useful commands
which can be expanded by creating your own text commands via the special DXCore component.

To learn more about creating your own templates, refer to the following articles:

•	 Creating simple templates step by step, where the simple templates creation process is described.
Simple templates have an easy text expansion containing simplest string providers and text commands.

204

•	 Creating advanced code templates step by step, where complex templates are created. Such tem-
plates may have alternate expansions and use advanced text commands like ForEach, Get, Set, etc.

Creating simple templates step by step

Once you know recommendations for creating new templates and have the Templates options page open, you can
start writing a template expansion starting from plain text. Any plain text typed or pasted into the Expansion area will
be expanded as is, for example:

the template name will be replaced with the expansion text:

The text in the Expansion area is highlighted with the syntax of the chosen language at the bottom of the page, e.g.:

After a template expands, the editor caret is positioned at the end of the expansion, by default. We can bring more in-
telligence into our template expansion by inserting simple text commands for positioning an editor caret and selecting
the resulting text, for example:

205

The text commands are wrapped into special tags (« and »), so the CodeRush Templates engine can find commands in
the template expansion, parse the name of a text command and then execute one, to get its results. The most common
text commands are placed on the commands tool bar:

All other commands can be inserted via the Command combo box:

206

or by right-clicking the Expansion area and choosing the “Insert TextCommand…” menu item:

The Select TextCommand dialog will appear, where you can find the required text command by typing its name in the
Filter box or by choosing it from the list:

207

The menu item will store previously chosen text commands, if any:

The Caret and Anchor text commands are usually used as a pair. The Caret is used to position the caret in the result-
ing template expansion. The Anchor text command is used to mark the end of the selection that starts from the Caret
position. If there’s no Anchor text command used in the expansion, there will be no text selection. However, if there’s
no Caret text command used, the current editor caret position is used. If there are several Caret or Anchor text com-
mands, the only one last text command is valid. The resulting expansion looks as follows:

If you need to create templates with more than one entry point, you can drop markers in your template. Markers are
useful when a template requires more than one point where you are going to modify or add code after an expansion is
completed.

Now, let’s add more intelligence by inserting several string providers. String providers simply return string values.
You can insert them by right-clicking the Expansion area and choosing the “Insert StringProvider…” menu item:

208

To learn more about a specific string provider, hover over its name in the Select String Provider dialog:

Let’s use the string providers like FileName, GetUserFirstName and GetUserLastName and modify the template
expansion as follows:

209

Once this template saved and expanded, the following result is produced:

Let’s change the expansion further by adding the linked identifiers text commands which allow you to change a piece
of text in several locations at once. For example, let’s add linked identifiers for the first name of a user. The Link text
command is used to add linked identifiers:

Result:

This is how simple templates are created. The more complex templates use an advanced text command which may it-
erate members of the current class, add dependent namespaces or paste text into multiple locations as well as multiple
files. See how complex templates are created in the corresponding post (coming soon).

210

211

212

Chapter 4. Consume-first code declaration providers

Declaring type declarations

Declare Attribute CodeRush code provider

Attributes provide a powerful method of associating declarative information by decorating elements of the code, such
as types, methods, properties, parameters and assemblies. Once an attribute is associated with a program entity, it can
be queried at run time and used in various cases, for example, associating a help document with program entities (via
the Help attribute), or marking an item as out of date (via the Obsolete attribute).

As the name says, the Declare Attribute code provider generates a new attribute class for an undeclared attribute
reference:

It adds the appropriate AttributeUsage attribute for the newly declared attribute with the corresponding attribute
target, which can be easily modified using the Text Fields CodeRush feature:

Simply press Enter when you are done with the name of the attribute and you will be navigated to the attribute target
for further modification:

If the attribute target is valid, pressing the Enter key for the second time will move you inside the constructor of the
class.

213

Declare Class

Declare Class code provider generates a class for the current type reference to a non-existent type. If the type
reference on the editor caret creates a new instance of a non-existent type that takes some arguments, the appropriate
constructor is generated for the new class.

CSharp:

Result:

Visual Basic:

Result:

Otherwise, if there are no arguments passed, the default public parameterless constructor is declared:

214

CSharp:

Result:

Visual Basic:

Result:

A marker will be dropped after Declare Class is performed at the source text caret position to easily get back and
continue code editing:

Also, text fields will be created for the constructor parameters, if any, to easily rename them, according to your pref-
erence (see the sample above).

A similar code provider is Declare Struct.

Specific code providers for declaring new classes

CodeRush provides code providers for declaring classes, such as:

215

•	 Declare Class to declare a simple class without members,

•	 Declare Struct to declare a structure without members,

•	 Declare Attribute to declare an attribute class,

•	 Create Descendant and Create Descendant (with virtual overrides) to declare descendant classes,

•	 Create Ancestor to declare base classes,

•	 Create Implementer to declare a class that implements an interface.

There are two additional specific code providers that declare classes:

•	 Declare Class with Properties

•	 Declare EventArgs Descendant

The Declare Class with Properties declares a class with properties (auto-implemented) initialized to the parameters
passes to the constructor. That is, if you type a constructor call to an undeclared class that takes several parameters,
for example:

the code provider will produce the following class after it is applied:

216

All parameters are linked together for fast renaming. Properties are renamed in sync with parameters.

The Declare EventArgs Descendant is a dedicated code provider to declare classes that descend from the System.
EventArgs class. It is available on the type reference to an undeclared class, whose name ends with the “EventArgs”:

or on the type argument that must be an EventArgs descendant, for example:

The following result will be produced in the last case:

217

Declare Struct

Declare Struct code provider generates a structure for the current type reference to a non-existent type. If the type
reference on the editor caret creates a new instance of a non-existent type that takes some arguments, the appropriate
constructor is generated for the new structure:

CSharp:

Result:

Visual Basic:

218

Result:

Otherwise, if there are no arguments passed, the default public parameterless constructor is declared:

CSharp:

Result:

Visual Basic:

Result:

A marker will be dropped after Declare Struct is performed at the source text caret position to easily get back and
continue code editing:

219

Also, text fields will be created for the constructor parameters, if any, to easily rename them, according to your pref-
erence (see the sample above).

A similar code provider is Declare Class.

Declare Interface

The Declare Interface code provider generates a new definition of an interface and adds interface referenced
members to it, if any. The declaring provider is available on an undeclared type reference, that starts with an upc-
per-case letter I, e.g. ILogger.

For example, declaring an Interface from the ILogger reference in this code:

01

02

03

04

05

06

07

08

09

10

11

12

13

class Log

{

 private static ILogger logger = new Logger();

 public static void SendMessage(string msg)

 {

 logger.SendMessage(msg);

 }

 public static string GetMessage(int index)

 {

 return logger.GetMessage(index);

 }

}
Will result in the following Interface declaration:

1

2

3

4

5

public interface ILogger

{

 void GetMessage(int index);

 void SendMessage(string msg);

}
The interface declaration is placed above the current type in the same file, and the marker is dropped at the source
starting position over the interface reference.

220

Declare Delegate

A delegate is a special kind of object that holds a reference to a method. Once a delegate is assigned a method, it
behaves exactly like that method. It can have parameters and a return value. Using a delegate allows the programmer
to encapsulate a reference to a method inside a delegate object.

CodeRush provides the Declare Delegate code provider that is available on references that refer a delegate which is
not declared yet, for example:

the following result will be produced after the code provider is applied:

Another example:

the following delegate will be generated:

Declaring enumeration types and its elements

An enumeration type is a special set of related constants, each with an integer value. Enumerations are useful for de-
fining states and sequences, particularly when there is a natural progression through those states. Each constant in the
enumeration list can be compared and formatted using either its name or value. For example, assume that you have
to define a variable whose value will represent a day of the week. There are only seven meaningful values which that
variable will ever store. To define those values, you can use an enumeration type.

CodeRush helps you to declare enumeration types and its values easily and quickly. Type the code as if you already
had the resulting enumeration type declared, e.g.:

221

01

02

03

04

05

06

07

08

09

10

11

12

13

public ExperienceLevel GetLevel(int score)

{

 switch (score)

 {

 case 1:

 return ExperienceLevel.Novice;

 case 2:

 return ExperienceLevel.Intermediate;

 case 3:

 return ExperienceLevel.Expert;

 }

 return ExperienceLevel.Unknown;

}

However, the ExperienceLevel enumeration is not yet actually declared. Move the editor caret to
the ExperienceLevel reference and execute the Declare Enum code provider:

The resulting code will look like this:

222

1

2

3

4

5

6

7

public enum ExperienceLevel

{

 Unknown,

 Novice,

 Intermediate,

 Expert

}
If you didn’t declare all elements, and are considering adding other, you are able to continue to enter them and then
use the Declare Enum Element code provider for each new element you would like to add into the enumeration type
declaration:

Executing the Declare Enum Element will extend the target enumeration type as follows:

223

1

2

3

4

5

6

7

8

public enum ExperienceLevel

{

 Unknown,

 Novice,

 Intermediate,

 Expert,

 Guru

}
An option for positioning newly declared types

You can change the target position for classes, structures and interfaces created by CodeRush code generation code
providers:

The following code providers are effected on this setting:

•	 Create Ancestor

•	 Create Descendant

224

•	 Create Descendant (with virtual overrides)

•	 Create Implementer (implicit)

•	 Create Implementer (explicit)

•	 Declare Attribute

•	 Declare Class

•	 Declare Class with Properties

•	 Declare Delegate

•	 Declare Enum

•	 Declare EventArgs Descendant

•	 Declare Interface

•	 Declare Struct

Declaring members

Declaring methods and constructors

When writing a new code, it usually implies writing a not-declared code like a method invocation, property calls, etc.
To help you quickly create the required declarations, there are a lot of code generation providers for declaring meth-
ods, properties, fields, locals and everything else. Let’s review the method and constructor code declaration providers:

•	 Declare Constructor

•	 Declare Method

•	 Declare Method (abstract)

When instantiating a new class with the ‘new’ operator, we may realize that we need additional or a different set of
arguments passed to a class constructor. In this case a constructor does not exist yet, of course. The Declare Con-
structor code provider allows you to create a new constructor at the preferred position, fill out the new parameter
names automatically, and allow you to rename them if required.

After the code provider is applied on the following undeclared constructor instantiation:

225

it will produce the following code:

We can do the same with usual the methods, whether they are static or instance. Just write down the method invo-
cation expression and specify the required arguments for the new method. Then, apply the Declare Method code
provider:

226

and get the method declared automatically:

Another version of the code provider called Declare Method (abstract) does almost the same thing, but creates an
abstract method if you are inside an abstract class:

resulting in an abstract method declaration:

227

The difference with the Visual Studio method code generation feature is that CodeRush code providers have the
following benefits:

•	 choose a destination position for a new method

•	 specify the name of each parameter easily

•	 toggle the default method options, e.g., scope (public, private, protected, etc)

•	 quickly navigate inside the new method and get back if required using Markers

Declaring various properties

The consume-first declaration features of CodeRush are a quick way to generate the required code without typing
the entire declaration’s code by hand. Once you have a reference to an undeclared member, pressing the CodeRush
key allows you to choose a member you would like to declare. Let’s take a look at the property-declaring code
generation providers you can use.

Here they are:

Provider Name Description
Declare Property Generates a property for the selected element reference.
Declare Property (auto-implemented) Generates an auto-implemented property for the selected element

reference.
Declare Property (with backing field) Generates a property with backing store for the selected element

reference.
Declare Properties Generates auto-implemented properties for this object initializer

expression.
Declare Initialized Property Adds an auto-implemented property and initializes it to the param-

eter at the caret.
Declare Initialized Properties Adds auto-implemented properties and initializes them to each

parameter of this constructor or member.
Declare Getter Generates a getter of the target Property for the selected element

reference.
Declare Setter Generates a setter of the target Property for the selected element

reference.

228

The first three code generation providers (Declare Property, Declare Property (auto-implemented), Declare
Property (with backing field)) generate the usual property at the target location: inside the current class, or inside
the referenced class, if the reference has a type qualifier. In both cases, the final position of the property declaration is
being chosen using the target picker.

Consider the following code sample:

1

2

3

4

5

6

7

8

9

public class Circle

{

 public static Circle Create()

 {

 Circle circle = new Circle();

 circle.Radius = 10;

 return circle;

 }

}

The Radius identifier references an undeclared element declaration, so we can declare a property for it. Performing
the Declare Property code provider will result in the following declaration:

01

02

03

04

05

06

07

08

09

10

11

public int Radius

{

 get

 {

 throw new NotImplementedException();

 }

 set

 {

 throw snew
NotImplementedException();

 }

}

Choosing the Declare Property (with backing field) will produce the following code:

229

01

02

03

04

05

06

07

08

09

10

11

12

private int _Radius;

public int Radius

{

 get

 {

 return _Radius;

 }

 set

 {

 _Radius = value;

 }

}

And, finally, Declare Property (auto-implemented) will create a simple property declaration:

1 public int Radius { get; set; }
Note that if the reference is not assigned to any value, the Declare Property and Declare Property (with backing
field) code provider will produce a read-only property. For example, declaring a property for the Radius reference
from this code:

01

02

03

04

05

06

07

08

09

10

public class Circle

{

 public static Circle Create()

 {

 Circle circle = new Circle();

 circle.Diameter = circle.Radius * 2;

 return circle;

 }

 public int Diameter { get; set; }

}

Using the Declare Property (with backing field) will produce a read-only property with the getter only, because the
identifier is not assigned and the value is only retrieved in the code:

230

1

2

3

4

5

6

7

8

private int _Radius;

public int Radius

{

 get

 {

 return _Radius;

 }

}

Note that the auto-implemented properties should always declare its setter and getter by the language specification.
So, declaring a property from a read-only reference, using the Declare Property (auto-implemented) code provider
will always generate a read-write property.

After you have a read-only or write-only property declared, and then write a reference to utilize another property’s ac-
cessor, the Declare Setter and Declare Getter code providers may help you create one for you. In the sample above,
we declared a read-only property. Here’s the code:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

public class Circle

{

 public static Circle Create()

 {

 Circle circle = new Circle();

 circle.Diameter = circle.Radius * 2;

 return circle;

 }

 private int _Radius;

 public int Radius

 {

 get

 {

 return _Radius;

 }

 }

 public int Diameter { get; set; }

}

231

If you would like to initialize the Radius like this:

1

2

3

4

5

6

7

public static Circle Create()

{

 Circle circle = new Circle();

 circle.Radius = 10;

 circle.Diameter = circle.Radius *
2;

 return circle;

}

You have to declare a setter for the property. Executing the Declare Setter will extend the Radius read-only property
with the getter accessor and the property now has read-write access:

01

02

03

04

05

06

07

08

09

10

11

public int Radius

{

 get

 {

 return _Radius;

 }

 set

 {

 _Radius = value;

 }

}

Notice that the setter’s code logic was automatically implemented for you as well. The Declare Getter generates a
getter accessor for the write-only property and converts the property into a read-write property.

Now let’s review the Declare Initialized Property and Declare Initialized Properties code providers. The first one
declares an auto-implemented property and initializes it to the parameter at the editor caret. Once your editor caret
position is at a parameter to a method or constructor, e.g. ‘radius’ in the following sample:

232

01

02

03

04

05

06

07

08

09

10

public class Circle

{

 /// <summary>

 /// Initializes a new instance of the Circle class.

 /// </summary>

 /// <param name=»radius»>The radius of the Circle.</param>

 public Circle(int radius)

 {

 }

}

the Declare Initialized Property becomes available, and when you perform it, it will produce the following result:

01

02

03

04

05

06

07

08

09

10

11

12

public class Circle

{

 /// <summary>

 /// Initializes a new instance of the Circle class.

 /// </summary>

 /// <param name=»radius»>The radius of the Circle.</param>

 public Circle(int radius)

 {

 Radius = radius;

 }

 public int Radius { get; private set; }

}

The Declare Initialized Properties does absolutely the same thing, but for several parameters. It is available on the
name of the method or constructor. If there are at least two parameters that do not have the corresponding properties,
it will declare properties for all parameters that do not have an assignment to a property. For example, having this
code:

233

01

02

03

04

05

06

07

08

09

10

11

12

public class Circle

{

 /// <summary>

 /// Initializes a new instance of the Circle class.

 /// </summary>

 /// <param name=»radius»>The radius of the Circle.</param>

 /// <param name=»Color»>The color of the Circle.</param>

 public Circle(int radius, Color color)

 {

 }

}

and applying the Declare Initialized Properties will extend your code to the following one:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

public class Circle

{

 /// <summary>

 /// Initializes a new instance of the Circle class.

 /// </summary>

 /// <param name=»radius»>The radius of the Circle.</param>

 /// <param name=»Color»>The color of the Circle.</param>

 public Circle(int radius, Color color)

 {

 Radius = radius;

 Color = color;

 }

 public int Radius { get; private set; }

 public Color Color { get; private set; }

}

234

And finally, the Declare Properties code provider. This one, as mentioned earlier,
generates auto-implemented properties for an object initializer expression. Object initializer expression is constructed
like this:

1

2

3

4

5

6

7

public class Circle

{

 public static Circle Create(int radius, Color color)

 {

 return new Circle { Radius = radius, Color = color };

 }

}

Notice that the Radius and Color properties are undefined. Move the editor caret to one of these identifiers and apply
the Declare Properties code provider. It will result in the following code:

1

2

3

4

5

6

7

8

9

public class Circle

{

 public static Circle Create(int radius, Color color)

 {

 return new Circle { Radius = radius, Color = color
};

 }

 public int Radius { get; set; }

 public Color Color { get; set; }

}

That’s all for property generation code providers. See other code-declaring code providers that are shipped
in CodeRush Pro. By the way, some of these providers are available in the free CodeRush Xpress version.

Declaring events and event handlers

With the help of CodeRush we can declare everything starting from undeclared local variables and members to unh-
declared objects like classes and structures. Here, we will take a look at the code declaration providers for declaring
events and event handlers:

•	 Declare Event

•	 Declare Event Handler

The Declare Event code provider creates an event for an undeclared event reference, e.g:

235

If the Click event is not yet declared, you can apply the Declare Event code provider for the event reference:

The code provider will determine the resulting delegate type automatically:

As a complementary addition, there is another code provider which allows you to declare event handlers. The De-
clare Event Handler code provider is available on the reference to an undeclared event handler, e.g.:

236

The Timer object in this sample takes a single argument of the System.Threading.TimerCallBack type that represents
a callback method to be executed. Applying the Declare Event Handler will generate the corresponding method with
the signature of the TimerCallBack delegate:

Declaring locals

Local variable declarations are the most often used types of declarations in code. A local variable is a type of variable
declared by local variable declaration inside a block the variable is intended to be local to. The local variable declara-
tion explicitly defines the type of the variable that has been declared along with the identifier that names the variable.
You can also declare implicitly typed local variables, whose type is inferred by the compiler from the expression.

With the help of CodeRush consume-first declaration features, you don’t have to type the definition of a local
variable declaration by hand. Any local reference to an undeclared element, or a statement that returns a value, but
does not assign it to anything, can be automatically declared using consume-first declaration features specific to local
variable declarations: Declare Local and Declare Local (implicit).

Before you apply any of the code providers, you can see the resulting code that is being inserted.

The Declare Local code provider creates an explicitly-typed local variable declaration, and the Declare Local (im-
plicit) declares an implicitly-typed local variable declaration. The Declare Local defines the correct type of the new
variable declaration from the code:

If there are several possible types, you can choose the type from a sub menu:

237

If the Declare Local is performed on a variable reference, it declares a named variable on the scope where it is visible
for all other variable references. If the code provider is executed on a statement, it’s value is assigned to a variable
declaration:

The Declare Local (implicit) is similar to the Declare Local code provider, but it creates an implicitly-typed local
variable declaration in case you don’t care about variable’s type:

238

See also: consume-first declaration features for field variables.

Declaring fields

Unlike the local variable declarations, fields are simply variables that are declared directly within the code block of
a class or a structure. Fields are declared in the type block by specifying the access level of the field, the type of the
field and the name of the field. A field may also include a readonly modifier. This type of field can only have its value
set directly in its declaration or from within a constructor of its containing class.

With the help of CodeRush consume-first declaration features, you don’t have to type the definition of a field
variable declaration by hand. Any reference to an undeclared element can be declared automatically for you in a
single step. You can also declare a field variable and assign values of the method or constructor parameters. Here are
useful code providers specific to field declarations:

•	 Declare Field

•	 Declare Field (read-only)

•	 Declare Initialized Field

•	 Declare Initialized Fields

Before you apply any of the code providers, you can see the resulting code that is being inserted.

The Declare Field code provider declares a new private field declaration from an undeclared reference inside the
current type declaration:

239

If there are several possible types, you can choose the type from a sub menu:

The newly created declaration is placed near the other field declaration or at the top of the current type if there are no

240

fields in the class or struct.

The Declare Field (read-only) allows you to declare a private read-only field declaration if the reference inside a
constructor to an undeclared element that is not assigned:

The Declare Initialized Field and Declare Initialized Fields code providers both work with the parameters of a
method or a constructor. They declare a field declaration and assign the value of a parameter to the newly created
field declaration. The difference between these two code providers is that the Declare Initialized Field is available
only for a single method parameter:

and the Declare Initialized Fields allows you to declare fields for all parameters that are not yet assigned to any field
when the editor caret is at the name of the method/constructor:

241

Both providers add linked identifiers that allow you to immediately rename the field declaration and the assignment
reference. Also, a marker is dropped to be able to quickly navigate back to the starting source location.

See also: consume-first declaration features for local variables.

MVC-specific providers

There are three code generation providers specific to MVC. They allow you to declare MVC controllers, MVC aco-
tions and MVC views correspondingly:

•	 Declare Controller

•	 Declare Action

•	 Declare View

The Declare Controller code provider creates a new MVC controller if one is undeclared. The code provider is
available on the corresponding controller name argument of the Action, ActionLink, or RenderAction method
invocation, e.g.:

242

The referenced action is automatically added to the generated controller class:

There is also a second version of the code provider which simply calls the Visual Studio built-in dialog for declaring
a new controller. You can differentiate between the two code provider by using a special icon over it in the Popup
menu.

The Declare Action code provider creates a new MVC action from the reference to an action which is not yet
declared. The code provider is available at the corresponding action name argument of the Action, ActionList, or
RenderAction method invocation when the appropriate controller from the same method invocation exist:

The result will be declared in the appropriate MVC controller:

The Declare View code provider invokes the Visual Studio built-in Add View code generation feature on the
reference to non-existent View:

243

Once applied, the Add View dialog appears, where you can specify the required parameters for the new MVC View:

Once confirmed, the new MVC view will be added:

244

245

246

Chapter 5. Coding helpers and assistants

Auto Declare

Auto Declare allows you to quickly declare a variable (field, local or parameter) based on its type. To apply Auto
Declare, type the class name and press the Ctrl+A shortcut. The variable will be declared with an appropriate name,
and an action hint will be shown:

As you see, the identifier name is inherited from its type. The name of a variable is formatted according to your
identifier code style settings. The style settings can be set for fields, local variables and parameters separately on the
“Editor | Code Style | Identifiers” options page in the Options Dialog:

For example, the field of the StringBuilder type will be named _StringBuilder:

247

You can also specify the default names for identifiers of a certain class on the “Editor | Code Style | Default Names”
options page:

The Enabled option specifies whether the default names are used by Auto Declare. If the option is turned off, the
declared identifier inherits the name from its type. Otherwise, if the Enabled option is turned on, AutoDeclare will
use default names from this options page.

To add or delete a default name for a specific type, use the New and Delete buttons appropriately. For example, let’s
specify the default name for the StringBuilder type to be just an “sb”.

1. Click on the Enabled checkbox if it is not checked

2. Click on the New button

3. Fill the TypaName field

4. Fill the Value field

248

5. Click the OK button or press the Enter key to save your changes:

Now, when we declare a local variable of the StringBuilder type, we will get the following result:

Intelligent code lines enhancement and modification using the Duplicate Line feature

The Duplicate Line CodeRush feature intelligently creates a copy of an existing line of code, allowing you to easily
modify it. If the code line is recognized as a predefined pattern, the line is copied and a portion of it is selected for
further modification. Note that some code line bits can be modified automatically for you as well.

The predefined duplication patterns are configurable. They are stored and presented as regular expressions that con-
tain one or several DXCore built-in reg-ex aliases for easy understanding. If the line doesn’t match any of the existing
patterns – nothing happens, by default. However, there an option to copy-paste the entire line of the text if no matches
are found when the feature is performed. All available options are listed later.

To perform the Duplicate Line, press the Shift+Enter key anywhere on the line:

249

You can duplicate variable declarations, constants, events, single-line interface members, using statements, method
calls, and other code pieces. Here’s the list of predefined duplication patterns shipped with CodeRush:

Pattern Name Description Sample code

Local Variable Duplicates local variables, allowing you to
change its name.

C#: string varName;
VB: Dim varName As String;

Field Duplicates field declarations. C#: private string fieldName;
VB: Private fieldName As String

Event Duplicates event declarations.
C#: public event EventHandler MyEvent;
VB: Public Event MyEvent As EventHan-
dler

Property
(auto-implemented)

Duplicates single-line auto-implemented
property declarations.

C#: public string PropertyName {get; set;}
VB: Public Property PropertyName As
String

Using/Imports Duplicates using (Imports) statements. C#: using System.Drawing;
VB: imports System.Drawing

Initialized Field Duplicates an initialized field declaration
(bringing the initialization to the new line).

C#: private bool fieldName = true;
VB: Private fieldName As Boolean = True

Initialized
Integer
Field

Duplicates an initialized field of type integer.
The initialization value is incremented by
one against the source line value.

C#: private int fieldName = 1;
VB: Private fieldName As Integer = 1

Method (Interface) Duplicates interface method declarations. C#: void MethodName();
VB: Sub MethodName()

Property (Interface) Duplicates interface property declarations. C#: String PropertyName { get {} set {} }
VB: Property PropertyName() As String

Assignment
Statement

Duplicates an assignment statement, select-
ing the left side of the statement.

C#: Identifier = value;
VB: Identifier = value

if (aa is bb)

Matches if-expressions checking to see if
object (O) is of type T. Declares a new local
variable of type T, initialized to O (casts it
to T type).

C#: if (myObject is SomeType)
VB: If (myObject Is SomeType)

250

Flagged Enum
Element

Duplicates an initialized element of an enu-
meration, doubling the initialization value
on the next line.

C#: Identifier = 1,
VB: Identifier = 1

Because Duplicate Line is based on the regular expression engine (similar to the Intelligent Paste feature), you can
use it in all CodeRush supported languages. All duplication patterns are configurable on the Editor | Auto Com-
plete | Duplicate Line options page in the Options Dialog:

Here you are able to change any existing patterns, or create your own, using the appropriate buttons. On the left, you
can observe the list of duplication patterns and change their order. The order is important, because patterns are evalu-
ated in the order that they appear in the list. You can move items of the list with the arrow buttons provided or via the
right-clicking context menu. More specific duplications should be listed before more general duplications.

To create a new duplication pattern, click the New button or press the Insert key. You can also create a new pattern
based on an existing one, by right-clicking on the pattern from the list, and choosing the “Duplicate” menu item in
the context menu. Note that it is possible to create patterns that match “subsets” of other patterns. For example, a field
that is initialized to an integer (“Initialized Integer Field“) is a subset of “Initialized Field” pattern. To remove the
pattern, click the Delete button or press the Ctrl+Delete shortcut.

On the right side of the options page you can modify options for a particular duplication pattern, selected on the left
side. Available options are:

Option Name Description
Name The name of the duplication pattern. Appears in the Feature UI hint.
Match With The regular expression pattern of the code line where this pattern is available.

251

New Line The regular expression pattern of the resulting duplicated code line.
Strip white space
before match

Specifies whether the preceding whitespace in the source line is ignored.

Strip comments
before match

Specifies whether the preceding comments in the source line are ignored.

Treat single spaces
as optional white
space

If this option is on, Duplicate Line treats single spaces as an optional whitespace from
the Match With and New Line values. This allows you to enter these values easily, which
makes them more flexible in regard to whitespaces (tabs, spaces, several spaces in a row,
etc).

Use The context for the duplication pattern where it is available.
Comment The comment for the duplication pattern.

Two additional options are available on another options page: Editor | Auto Complete | Duplicate Line Setup:

•	 Copy a source code line if no Duplicate Line match occurs

The options specifies whether the entire line of text should be copy-pasted, if no duplication patterns match the cur-
rent line.

•	 Duplicate a previous source code line if the current one is empty

The option specifies whether you are able to perform the Duplicate Line feature on an empty line, followed by the
line you were going to duplicate. This is useful when you moved the editor caret to the next line (e.g. by pressing

252

the Enter key at the end of line) and realized that you can actually duplicate the previous line with manual typing.

As always, any shortcuts like Shift+Enter for the Duplicate Line are configurable on the IDE | Shortcuts options
page in the IDE Tools Options Dialog.

Note that the Duplicate Line feature is also available in the free CodeRush Xpress version.

Code editor auto-complete features – Intellassist

The Instellassist feature of DevExpress CodeRush Pro is similar to the built-in Intellisence feature of Visual Studio.
It provides additional hints that pop up as you type the code and completes the edited code with an in-scope identifier
or other suggestions. These hints help you select code elements or complete the text you need in the context of what
you are working on without retyping the entire text.

To use Intellassist, you should simply type a text as you would normally. Intellassist activates automatically once
you type a couple of characters and it has at least a single suggestion. You can tweak the Intellassist activation for
different contexts such as a code, a string or a comment. When Intellassist senses one or more suggestions matching
the code you have typed so far, the best suggestion will be displayed to the right of the editor caret as a selected text:

If there are multiple suggestions, you can see the number of suggestions in a small bar under the current line and
select any by cycling them as required:

The suggested text does not actually exist in the code editor, so, you can simply ignore a suggestion and continue
typing without paying attention to it or accept a suggestion.

Available Actions

The following actions may be performed when an Intellassist hint is active:

•	 Press the Enter key to accept the active suggestion.

•	 Press the Shift+Enter key to accept a portion of the active suggestion.

253

•	 Press the Shift+Enter to accept a part of a suggestion starting from the editor caret to the character
preceding the next uppercase letter in the suggestion. For example, if “MultipleSuggestionsActivationTest”
was the suggestion, and the first two letters (“mu“) had been typed:

pressing Shift+Enter successive times would cause the selection to shift as follows (each picture illustrates the next
Shift+Enter press):

Accepting a part of a suggestion is useful when you need to create a new identifier name that is similar to an existing
identifier, or when you want to quickly access a different but similarly-named suggestion. You can press Shift+Enter
to accept a part of the suggestion, and then start typing different characters to get other suggestions.

•	 Press the Tab and Shift+Tab shortcuts to cycle forward and backward through the list of multiple
suggestions.

•	 Press the Delete key to cancel the active suggestion.

•	 Wait for a few moments and Intellassist will automatically hide the active suggestion.

•	 Continue typing the text completely ignoring the suggestion or narrowing down the suggestion
list for further acceptance.

Case Sensitivity

Intellassist suggestions are case-insensitive by default. If Intellassist suggests an identifier that is a case-insensitive
match to the text you have typed, it will highlight the mismatched characters:

254

This is useful if you are working in a case-sensitive language such as C# or C++. For example, in the following code
there are two suggestions are available for the text “us” typed:

One of the suggestions is a “userName”, which is a private field variable, and the other one is “UserName”, which is
a property. The first suggestion starts with “us”. This is an exact match, so no characters are highlighted.

However, the second suggestion starts with “Us”, which is a case-insensitive match. So, an uppercase “U” is drawn
over the “u” you typed, indicating changes that will occur to the code you have entered when you accept this sugges-
tion:

Note that the icon in the hint allows you to differentiate the suggested member names.

When the case-sensitivity option is turned off, there is another option to suggest only case-sensitive matches when the
text you typed contains any uppercase letters. So in the example above, entering “Us” would result in only a single
suggestion – “UserName”.

Configuration

Intellassist is highly configurable. On the Intelliassist Activation options page you can specify the number of charac-
ters to match before Intellassist is activated. On the Intelliassist Setup options page you can specify whether case-in-

255

sensitive suggestions can be made, as well as the auto-hide and sorting options. To learn more about Intellassist
options, read the appropriate topic.

Extensibility

Intellassist is also highly extensible. DXCore provides a special component called Intellassist Extension, which can
extend the default suggestions with additional hints. Intellassist uses several extensions by default:

•	 Identifier Assist – the main suggestions provider, which suggests hints for the in-scope identifiers.

•	 Enum Assist – suggests elements of an enumeration.

•	 Path Assist – suggests phisical paths to the file on a disk.

Intellassist configuration and options

Intellassist feature of CodeRush has two options pages in the Options Dialog. Both of them configure this auto-comg-
plete feature and its extensions.

Activation options page

This page allows you to set the number of characters to match before Intellassist activates in three different contexts.
The contexts are:

•	 In Code – when you type a text inside the source code

256

•	 In Strings – when you type a text inside the quotes of the string expression

•	 In Comments – when you type a text inside a comment or an xml doc comment

You can set the default number of characters and individually for each Intellassist Extension available. The
available providers are listed in the installed Intellassist plug-ins area. If you create your own extension using the
corresponding Intellassist Extension DXCore control, you will see your extension in the list automatically if your
plug-in is loaded.

Setup options page

This options page allows you to tweak the following options:

•	 Enabled

Specifies whether or not Intellassist can provide any suggestions. If unchecked, you will not see the Intellassist func -
tionality.

•	 Show

Specifies the amount of idle time (in milliseconds) that should pass before suggestions are automatically offered.

•	 Hide

Specifies two options when Intellassist suggestions should be automatically hidden. You can set the amount of idle
time (in milliseconds) that should pass before suggestions are hidden, or the number of repeatedly ignored sugges-

257

tions in a row after which Intellassist won’t show the suggestion any longer.

•	 Case Sensitivity

Specifies the two case-sensitivity options when only exact case-sensitive matches should be offered: always or when
you type the uppercase characters. Also, you can choose the color that is used to highlight the characters that do not
match the case in which they have been typed, if case-sensitivity is allowed (checked).

•	 Suggestion order and sorting

Specifies the sorting options – whether the suggestions are sorted alphabetically or by length. Also, you can move the
recently-accepted suggestions to the top, so you will see them first in the list.

Smart Parentheses and Smart Brackets

Let’s talk about two similar features – the Smart Parentheses (also known as Smart Parens) and Smart Brackets.
These two features allow you to easily type parens and brackets without having to close them with the corresponding
closing paren or bracket, because they will be inserted automatically.

In this article the ‘paren’ means the opening or closing parenthesis ‘(‘ or ‘)’, and the bracket means the ‘[‘ (opening)
and ‘]‘ (closing) characters.

Once you type an opening paren (or bracket), the closing paren (or bracket) appears immediately:

When the feature is performed, the text fields (an orange box) are added with the capability of a quick leaving the paw-
rens (brackets) after the Enter key is pressed. If you type something inside parens or brackets and press the Enter key
to commit your change – the editor caret will move after the closing paren or bracket, allowing you to continue typing
without using arrow keys to move the caret. Such behavior with the text fields will likely seem to be unexpected for
the most users, but after you get accustomed to it, I’m sure you will love it.

Both of these features, apart from the automatic completion of parens (brackets), also include the following:

•	 easy deletion of empty parentheses (brackets)

If you don’t need parens (e.g. mistyped it), you can press the Backspace key and both parens (or brackets) will be
removed.

•	 smart semi-colon when typed inside parentheses (brackets)

As an alternative to the Enter key to continue typing after the closing paren or bracket is inserted, you can type the
semicolon ‘;’, if appropriate. This is useful mostly in C# and C++ languages, for code constructions which need to
invoke a line terminator, e.g. method calls:

•	 ignoring closing paren (or bracket) if manually typed

Note, if you have a habit of typing the closing paren or bracket immediately after an opening paren or brack-
et, CodeRush will put only a single closing character instead of two (one automatically added and the other one –

258

manually typed), so you won’t end with two closing parens or brackets.

Both Smart Parentheses and Smart Brackets features are fully customizable. Their settings are available on a single
options page (Editor | Auto Complete | Parens & Brackets) in the Options Dialog:

The settings are split into two groups separately for each feature. Available Smart Parens options are:

Option Name Description
Use Smart Parentheses Toggles the availability of the Smart Parentheses feature.
Auto-complete parentheses Enables or disables parentheses auto completion (automatic insertion of the clos-

ing paren after the opening parent is typed).
Auto-complete parentheses in
front of identifiers (typecasting)

Enables or disables parentheses auto completion when typed in front of an identi-
fier (e.g. for a casting in C#).

Add spaces inside parens (|) If this option is turned on, a space is added between parentheses after auto-com-
plete parentheses is performed.

Use text fields Enables or disables the text fields insertion after auto-complete parentheses is
performed.

Easy-delete empty parentheses Enables or disables the capability to easily delete empty parentheses with a single
Backspace keystoke inside empty parentheses.

Ignore closing parenthesis
typed inside empty parentheses

Enables or disables the capability to ignore the manually typed closing parenthe-
sis after auto-complete parentheses is performed.

259

Smart semi-colon Enables or disables the capability to type the semi-colon inside the parentheses
(before the closing paren) and automatically move it to the appropriate location
(after the closing paren).

The same options are available for Smart Brackets separately:

Option Name Description
Use Smart Brackets Toggles the availability of the Smart Brackets feature.
Auto-complete brackets Enables or disables brackets auto completion (automatic insertion of the closing bracket

after the opening bracket is typed).
Add spaces inside
brackets [|]

If this option is turned on, a space is added between brackets after auto-complete brack-
ets is performed.

Use text fields Enables or disables the text fields insertion after auto-complete parentheses is per-
formed.

Easy-delete empty
brackets

Enables or disables the capability to easily delete empty brackets with a single Back-
space keystoke inside empty brackets.

Ignore closing brack-
et typed inside empty
brackets

Enables or disables the capability to ignore the manually typed closing bracket after
auto-complete brackets is performed.

Smart semi-colon Enables or disables the capability to type the semi-colon inside the brackets (before the
closing bracket) and automatically move it to the appropriate location (after the closing
bracket).

Smart Enter

Smart Enter is intended to improve the usability of the Enter key while coding in the editor. If the feature is enabled
and the Enter key is pressed, it moves the editor text caret to the next code line (starting it with the same amount of
white space on the current line and adding a line statement terminator to the end of the current line if it doesn’t exist
(.e.g semi-colon in CSharp) or inside of a code block, leaving the characters to the right of the source caret location at
their initial position. It is activated if the character to the right of the current caret position is one of the following:

•] (closing bracket)

•) (closing paren)

•	 > (closing angle bracket)

•	 ; (semi-colon)

Here are the CSharp samples where Smart Enter feature may be useful:

1) Before Enter is pressed:

260

After Enter is pressed (notice the caret is moved inside of a code block):

2) Before Enter is pressed:

After Enter is pressed (notice the caret is moved to the next line, and a semi-colon is added to the end of the staring
line):

The feature doesn’t depend on the current language used and should work everywhere when it is available. The most
preferred language for this feature is CSharp, however. By default, it is disabled. To enable it, follow these steps to
get to the Smart Enter options page:

1. From the DevExpress menu, select “Options…” to open the Options Dialog.

2. In the tree view on the left, navigate to this folder: “Editor\Auto Complete”.

3. Select the “Smart Enter” options page.

4. Check the “Enabled” checkbox.

There are no other options on this options page.

Scope Cycle

The Scope (Visibility) Cycle feature adds the capability to quickly change the visibility modifier of the active
member using a single shortcut. In a source code file, if your text caret is anywhere within or on a member (method,
function, property, class, etc) definition, you can use the Alt key with the Up andDown arrow keys, to cycle through
the legal visibility modifiers:

261

You can also use another feature to change a member visibility modifier by clicking the Member Icons using the
mouse.

Spell Checker

Spell Checker underlines the misspelled words inside the code editor. It can check spelling in strings, comments,
XML comments, and HTML elements against a built-in dictionary. Spell Checker provides an easy way to fix the
error using the Refactor! popup menu or a smart tag:

Spell Checker is based on the XtraSpellChecker™ component from DevExpress. Thus, integrated intoVisual
Studio Spell Checker has similar features, such as:

•	 Built-in support for OpenOffice dictionaries.

262

•	 Plain text format custom dictionary support.

•	 Automatic spell-checking as you type, word by word.

•	 Ability to add unknown words to the dictionary.

•	 Options allow you to ignore e-mails, URLs, mixed case/upper-case words, repeated words and
words with numbers within them.

Here is the Options Page of the Spell Checker:

Here you can do the following:

•	 Enable or disable the Spell Checker.

•	 Change the context Spell Checker is available for, e.g. “Strings”, “Comments”, “XML
Comments”, etc

•	 Change default options for the base Spell Checker component

•	 Manage dictionaries

To quickly turn Spell Checker on or off, use the appropriate icon on the DXCore Visualize toolbar:

263

To add a custom dictionary, refer to the following topic: How to add an Open Office dictionary for the Spell Checker.

How to add an Open Office dictionary for the Spell Checker

Follow these steps if you’d like to add a dictionary with a language other than English (United States) to
the CodeRush Spell Checker:

1. Download the required spelling dictionary from the openoffice.org (e.g. English (Canada)).

2. Create a new folder (e.g., “En-CA”) for your new dictionary. You can create it under the folder where default Spell
Checker dictionaries are stored, for example:

“C:\Program Files\DevExpress 2010.1\IDETools\System\CodeRush\BIN\PLUGINS\Dictionaries\En-Ca”

3. Extract the archive file (.zip) you downloaded in step #1 to the folder you created in step #2.

4. Inside Visual Studio, from the DevExpress menu, select “Options…” to open the Options Dialog.

5. In the tree view on the left, navigate to the “Editor” folder.

6. Select the “Spell Checker” options page:

7. At the bottom of the options page, enter the Dictionary name (e.g., “En-CA”).

8. Choose the “Open Office” dictionary type in the corresponding combo box.

264

9. Click the Add button.

10. In the Dictionaries list, select the newly added dictionary.

11. Specify the path to the downloaded dictionary in the DictionaryPath field.

12. Specify the path to the grammar file (.aff) in the GrammarPath field.

13. Specify the Culture in the Options section on top of the options page.

14. Click OK to apply your new dictionary and close the Options Dialog.

Now, the Spell Checker should use the new language dictionary to check spelling inside the code editor. You can
change additional settings later, if required.

Spell checking the entire solution

In addition to the usual Spell Checker CodeRush feature, you can find and review spelling errors from the entire
solution in the dedicated Spell Checker tool window:

265

Note that the Spell Checker feature must be enabled to perform a solution spell checking operation (enabled on the
Spell Checker options page in the Options Dialog).

The tool window contains three toolbar items:

Button caption Description
Spell check solution Runs a spell check analysis for the entire solution

266

Edit custom dictionary Opens a custom dictionary where you can specify custom words.
Options Opens the Spell Checker options page in the Options Dialog.

The other part of the window shows a grid with the spelling errors: the text with an error and the file containing one.
At the bottom of the tool window, you can see the preview code where the misspelled word was discovered.

Via the right click context menu, you are able to fix all similar misspelled words at once, fix a particular typo with the
suggested correction, navigate to a misspelled word or add it to a dictionary:

Toggle Region

The ToggleRegion action changes the collapsed state of the currently active region. This functionality is very similar
to the existing “Toggle Regions Outlining” shortcut, provided by CodeRush. The only difference is that you can
collapse the active region using the ToggleRegion action when the editor caret is located anywhere inside of a region,
while the “Toggle Region Outlining” shortcut is available only on the line with a region directive. The action is not
bound to any key, so you might want to do it via the Shortcuts options page in the Options Dialog.

Toggle Regions Outlining

When the editor caret is on the line with a region directive, you can press the Space key to collapse or expand the
outline of a region. There are built-in shortcuts for toggling outline expansion, but they are probably more tricky to
press and remember, e.g. “Ctrl+M, M” (hold the Control key and press the Mkey twice in the Visual C# keyboard
mapping scheme).

267

This ability is provided by a single shortcut, registered on the Shortcuts options page in the Options Dialog, which
just calls the “Edit.ToggleOutliningExpansion” Visual Studio command. There also exists the ToggleRegion ac-
tion that provides the same functionality (but available anywhere inside of a member, not only on directive lines), but
it is not bound to any key.

Move to Region

The Move to Region (also known as Member Mover) CodeRush feature extends the Member drop down menu with
a menu item that allows you to move the active member to a region according to your preference:

The list of regions contains regions that already exist with the current source code file. In addition, it also contains the
list of favorite regions that you may specify on the Move to Region options page in the Options Dialog:

268

This options page allows you to pre-configure an additional list of regions which will appear in the drop-down menu,
regardless of whether or not they already exist in the source code file. Here, you can also specify the position of a
member inside target regions:

•	 At the top

•	 Alphabetically

•	 At the bottom

The “Only show top-level regions in targeting menu” option deprecates nested regions showing inside of the Mem-
ber drop-down menu. Nested regions are shown with a small offset to the right in the list:

269

The “CR_MemberMover” plug-in, containing this feature, is an open source sample plug-in from the CodeRush
Shared Source solution. You are welcome to tweak it for your specific needs as you’d like.

Organizing source code and sorting class members

Reorganization of the code is a great practice to improve code readability. If you prefer to sort your type members
like this:

class {
private fields
constructors
public properties
public methods
private methods
}

or any other order, you can use the Member Organizer CodeRush plug-in for this purpose.

The plug-in is an open source DXCore plug-in from the CodeRush Shared Source solution. It contains only a sino-
gle action which is not bound to any key, by default. To assign a key, see the appropriate topic – the command name
is the “Organize Members“.

Because the plug-in has the source code, you are welcome to tweak it in any way you’d like. By default, when you
press the shortcut key bound to the “Organize Members” command, it will take the current type declaration, where
the editor caret is located, and organize its members using the following structure:

•	 First, it sorts all members into groups by its visibility:

o public

o protected

o protected internal

o internal

o private

Each one of these groups is automatically wrapped into a region (optional) with the corresponding name, for exam-
ple:

#region Public members…
#endregion

or

#region Private members…
#endregion

•	 Then, inside each visibility group, Member Organizerwill sort them by member type in the
following order:

o methods

o properties

270

o events

o fields

Members inside such groups are preceded with a corresponding comment (optional), such as:

// Properties…
// Methods…

For example, having a code like this:

Member Organizer with default settings will reorganize the code into this:

271

To modify the order of members, you have to modify the source code of the plug-in and then recompile it. Open up
the “MemberOrgPlugIn.cs” file, and go to the “MemberOrgPlugIn” class constructor. Here’s a part of its code:

1

2

3

4

5

6

_Filters = new FilterCollection();

 AddMainVisibiltyGroup(MemberVisibility.Public);

 AddMainVisibiltyGroup(MemberVisibility.Protected);

 AddMainVisibiltyGroup(MemberVisibility.ProtectedInternal);

 AddMainVisibiltyGroup(MemberVisibility.Internal);

 AddMainVisibiltyGroup(MemberVisibility.Private);

The AddMainVisibiltyGroup method looks like this:

272

01

02

03

04

05

06

07

08

09

10

private void AddMainVisibiltyGroup(MemberVisibility visibility)

{

 VisibilityFilter newFilter = new VisibilityFilter(visibility);

 newFilter.Wrapper = WrapperMode.Region;

 AddSubFilter(newFilter, LanguageElementType.Method);

 AddSubFilter(newFilter, LanguageElementType.Property);

 AddSubFilter(newFilter, LanguageElementType.Event);

 AddSubFilter(newFilter, LanguageElementType.Variable);

 _Filters.Add(newFilter);

}

And, finally, the AddSubFilter method:

1

2

3

4

5

6

private void AddSubFilter(VisibilityFilter newFilter, LanguageElementType
elementType)

{

 MemberTypeFilter subFilter = new MemberTypeFilter(elementType);

 subFilter.Wrapper = WrapperMode.Comment;

 newFilter.Add(subFilter);

}

As you can see, it is easy to modify the algorithm of the method sort. You can change positions of the members and
specify the optional Wrapper mode, which can have three self-explained states:

•	 None

•	 Region

•	 Comment

The latest version of the plug-in is attached with a few minor fixes (such as comment names). Don’t forget to specify
the correct build path in the Project options of the plug-in.

273

274

Chapter 6. Code selection and clipboard tools

Camel Case Navigation and Selection

Camel Case Navigation (also known as Camel Case Nav) moves the code editor text caret to the next or pre-
vious lower case to the upper case transition of the current word. Camel Case Nav is built using DXCore action
components, so it is activated via shortcuts.

The following shortcuts are available:

Shortcut Action name Description
Alt+Left CamelCaseLeft Moves the text caret to the next lower case to upper case transi-

tion, to the left of the text caret.
Alt+Right CamelCaseRight Moves the text caret to the next lower case to upper case transi-

tion, to the right of the caret.
Alt+Shift+Left CamelCaseLeft Extends the selection to the next lower case to upper case transi-

tion, to the left of the caret.
Alt+Shift+Right CamelCaseRight Extends the selection to the next lower case to upper case transi-

tion, to the right of the caret.
Alt+Backspace CamelCaseDeleteLeft Deletes the camel-case word to the left of the caret.
Alt+Delete CamelCaseDeleteRight Deletes the camel-case word to the right of the caret.

Sample:

You can customize shortcuts within the IDE | Shortcuts options page in the Options Dialog.

Selection Increase

Selection Increase is a command for a quick selection of continuous logical code blocks. For example, if the caret is
inside an expression, you can quickly expand the selection so it entirely holds the expression. The ability to quickly
define a selection around a logical block is useful for refactoring. For example, if you’d like to extract a piece of code
into a method or property – the Selection Increase will help you define your code block for extraction very quickly.
You can also use it to quickly select code you want to move to another location or select any member and/or type
declarations. Just place the caret at the beginning of the declaration you want to select, and press the shortcut. This
command is bound to NUM+ key or Ctrl+W key. After increasing a selection, you can reduce it using the Selection
Reduce command by pressing the NUM- key.

Increasing the Selection Further

If you want to add more code to the start of the selection (by logical code blocks), you may use the SelectionInclude-
PreviousElement action (which is not bound to any key by default). This will extend the active point of the selected

275

block to include the start of the preceding language element.
If you want to add more code to the end of the selection (by logical code blocks), you may use the SelectionIn-
cludeNextElement action (which is not bound to any key by default). This will extend the active point of the selected
block to include the end of the next language element.

Note: If the caret is inside a white space (e.g., at the absolute beginning of a line), the parenting block that is first
selected may be greater than you expect (for example, the first selection might be a method or an entire class rather
than a block that starts later on the same line. For best results, place the caret somewhere on a text of the code block
you want to select.

Selection Reduce

This command reduces the selection using the same logical blocks by which it was last increased via the Selec-
tion Increase feature. If you accidentally overshoot the block you want to select, you can reduce the selection
using NUM- key or CTRL+Shift+W keys.

The support of multi-selection for Visual Studio

The Visual Studio IDE has a great box selection feature that allows you to select a rectangular region of text within
the code editor by holding down the Alt key while selecting the text region with the mouse:

However, the selected region should represent a single continuous selection box. In other words, you can not select
multiple parts of the source code. But with the help of the CodeRush Multi-Select feature you can do that easily.
This feature allows you to create multiple selections in the source code or a typical text in the active text document as
follows:

You can cut, copy, paste or simply delete the multi-selected text in a single action via default shortcuts (Ctrl+C,
Ctrl+X, Ctrl+V). Text selections are contained within the Multi-Select stack. You can have any number of stacks for
each opened text document in the IDE.

Furthermore, the Multi-Select feature provides an additional action called Integrated Paste. It becomes available in
the right-click code editor context menu if you have copied several members of a class into Clipboard:

276

The integrated paste inserts copied members in a specific order: methods to method, properties to properties, fields to
fields etc. In other words, when you paste fields and properties, the copied fields will be moved near existing fields
and new properties will be pasted right over other properties of the destination class. This feature might be very use-
ful to rearrange members of a class when moving them to a different class.

The main purpose of the Multi-Select feature is to simplify source code edits. Consider the following code:

277

This class contains many properties. We can refactor this code by creating separate classes for the specific data. Let’s
select the required properties and cut them:

278

then, paste them into a separate class:

And apply the same technique to other data, so we end up with this:

279

The original code will look like this:

280

This code is now much easier to read and understand.

The following Multi-Select shortcuts are available by default:

Shortcut Action Description
Ctrl+Alt+Enter MultiSelectAdd Adds the current selection into the Multi-Select stack.

If there is no selection, the current language element
will be automatically selected.

Ctrl+Alt+Backspace MultiSelectClear Clears the current stack.
Ctrl+Alt+Num- MultiSelectUndo Removes the previous added selection from the stack.
Ctrl+Alt+Num+ MultiSelectRedo The opposite of the MultiSelectUndo to restore the

removed selection.

Note that if you don’t have an active text selection, the Multi-Select feature will automatically expand the selection
the same way as you would execute the Selection Increase command.

The Multi-Select feature is available out of the box. It was created as an open source plug-in in two CodeRush
Feature Workshop webinars. You can see how it was built from scratch and learn more on how to create CodeRush
plug-ins.

The feature has a single option page (Editor | Selections | MultiSelect) in the Options Dialog that allows you to tweak
the default highlighting color of a multi-selection piece.

You can also extend this feature programmatically via the DXCore MultiSelect service.

Wrapping code blocks with the Code Embeddings feature

CodeRush Code Embeddings allow you to wrap the selected code block or any text into another predefined code
block, such as: try/catch, try/finally, using and lock statements, while and other loops, region directives, etc. Code
Embeddings are available via the predefined keyboard shortcuts, via the Embed Selection code editor context menu
item, or using the Embed Selection code provider.

Embeddings are not context sensitive. This means that you can wrap any text into any code block, because the feature
does not analyze selected code – you only add text before and/or after the selected text. However, depending on the
selection type (e.g. whole line, multi-line, line fragment), different embeddings are available. So, it is up to you to
decide whether to apply a specific code embedding or not.

The feature can also change the resulting editor caret position, drop markers, paste clipboard contents into the
specified location and much more. This means that you have a full control over Code Embeddings, i.e. you are able
to add string providers and text commands to participate in embeddings. Embeddings are customized on the same
named Embeddings options page in the Options Dialog, where you can modify existing items or create custom ones.

281

Consider the following code:

1

2

3

4

5

6

7

8

string connectionString = Application.Properties.Settings.Default.Connec-
tionString;

SqlConnection connection = new SqlConnection(connectionString);

connection.Open();

SqlCommand command = new SqlCommand(«SELECT TOP 2 * FROM Main», connec-
tion);

SqlDataReader reader = command.ExecuteReader();

reader.Read();

Console.WriteLine(«{0} {1} {2}»,

reader.GetInt32(0), reader.GetString(1), reader.GetString(2));

This code creates a new SQL connection, executes an SQL command, reads its result and prints them on the Console.
Using the Code Embeddings feature we can enhance the code to the following:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

string connectionString = Application.Properties.Settings.Default.Connec-
tionString;

using (SqlConnection connection = new SqlConnection(connectionString))

{

 connection.Open();

 using (SqlCommand command = new SqlCommand(“SELECT TOP 2 * FROM Main”,
connection))

 {

 using (SqlDataReader reader = command.ExecuteReader())

 {

 while (reader.Read())

 {

 Console.WriteLine(«{2} {1} {0}», reader.GetInt0)32), reader.
GetString(1), reader.GetString(2));

 }

 }

 }

}

282

Which is much more appropriate for using an SQL database access APIs.

To apply an embedding use one of the following ways:

•	 Press the shortcut key. You can see all available shortcuts and create your own on the Short-
cuts options page. To create a new shortcut, use the Embed action name.

•	 Select the appropriate text and right click the code editor. Then choose the Embed Selec-
tion menu item:

•	 Select the appropriate text and perform the Embed Selection code provider:

283

Here’s the list of available code embeddings for different languages.

CSharp:

284

Embedding Shortcut Description
try..catch C Embeds the selection into the try{} catch{} code block.
try..finally F Embeds the selection into the try{} finally{} code block.
try..catch/finally T Embeds the selection into the try{} catch{} finally{} code block.
#region..
#endregion

R, Ctrl+3 Embeds the selection between the #region and #endregion directives.

#if..#endif Embeds the selection between the #if and #endif directives.

if () Embeds the selection into the if(){} code block.

if () else Embeds the selection into the if(){} else{} code block.

while() Embeds the selection into the while(){} code block.

do..while() Embeds the selection into the do{} while() code block.

using() U Embeds the selection into the using(){} code block.
lock() L Embeds the selection into the lock(){} code block.
block – {} B, Shift+[Encloses the selection in {} braces.
BeginUpdate..
EndUpdate

Embeds the selection between the BeginUpdate and EndUpdate method calls of
an object from the clipboard.

WaitCursor W Embeds the selection into the try{} finally{} block, provided that the WaitCur-
sor will be used during the selected code lines’ execution.

Stopwatch Creates a new instance of the System. Diagnostics. Stopwatch class, embeds the
selection into the try{} finally{} block between the Stopwatch. Start() and Stop-
watch. Stop() method calls, and outputs the Stopwatch. Elapsed value to the
console.

To string Shift+’ Quotes the selected code section.
Comment box Embeds the selection into the comment box.

Parentheses Shift+0 Embeds the selection into the parentheses.
Not Parentheses Shift+1 Embeds the selection into the parentheses and places the logical Not (!) operator

before the parentheses.
Brackets [Embeds the selection into the brackets.

Code Embeddings Options

The Embeddings options page allows you to customize or remove the predefined CodeRush Code
Embeddings and create your own for any registered language. The options page is located at the Editor | Selections |
Embeddings path inside the CodeRush Options Dialog. Here is what is looks like:

285

It consists of two parts:

1. The list of predefined code embeddings on the left with a toolbar at the top

2. Options for the selected code embedding on the right

In the list, you can see embeddings defined for the selected language. Items in the list can be grouped together by
using a separator. Embeddings will also be grouped the same way in the code editor context menu, for example.

There are four buttons on a toolbar at the top of the list:

1. New Embedding – adds a new embedding item over the currently selected embedding in the list

2. Visible on menu – toggles the visibility of the embedding item in the editor context menu or
the Embed Selection code provider. You can still perform hidden embedding using the keyboard shortcuts.

3. Begin group – begins grouping of the selected embedding item in the list. A group separator is
inserted above the selected embedding item.

4. Delete – removes the embedding item from the list

The list of available code embeddings also has a context menu:

286

It has the same items as the toolbar, along with a few additional items:

•	 Duplicate Embedding – creates a copy of the currently selected embedding item in the list

•	 Move Up – moves the selected embedding item one position up in the list and user UI

•	 Move Down- moves the selected embedding item one position down in the list and user UI

Now, the embedding item parameters are on the right of the options page. You can change the following settings for
the selected code embedding:

•	 Name – the name of the code embedding is used to access this specific embedding, e.g. when you
create a new shortcut for it.

•	 Caption – the display name of the code embedding is used in the UI, such as: the editor context
menu and the Embed Selection code provider.

•	 Style – the style of the code embeddings. The following styles are available:

Icon Description
Surround the selected text. The text is placed at the top, bottom, and on the left and on the right of the
selection.
Top and/or bottom of the selected text. The text is placed above and below the selection.

287

Left and/or right of the selected text. The text is placed to the left and to the right of the selection
(each line of the selection gains a prefix and a suffix).
Unique text is inserted at the start and end of the selected text, with repeating text added to the left
and right to each line in the middle of the selection.
The text is placed in front of and immediately after the selection.

After the style settings, there are settings for the left and right text positions:

Available settings are:

•	 Start of line – place the text at the start of a line

•	 Start of code (skip whitespace) – place the text right before another text (code) skipping the
whitespace characters

•	 Align with first line – align the text with the text of the first selected line

•	 Specified column [X] – place the text at the specified column (starting from 1)

Next, there are two checkboxes:

•	 Indent Selection – specifies whether an indent is added before the embedded text

•	 Modify empty lines – specifies whether empty lines, as well as lines containing a text, are
modified. If unchecked, empty lines are ignored and not wrapped at all.

The code embedding itself is edited in the corresponding area at the bottom of the right part of the options page. You
can see the Selected Text bar and type the text above, below, on the left, or on the right of the bar, depending on the
selected Style option. This area has a toolbar with several helper buttons and a combobox that allows you to choose
and insert another text command:

The buttons on the toolbar insert widely-used text commands:

•	 Paste from clipboard – inserts the Paste text command into the embedding editing area that will
paste the contents of the Clipboard when this code embedding is applied

•	 Place caret – inserts the Caret text command into the embedding editing area that moves the caret
to the specified position when this code embedding is applied

•	 Drop marker – inserts the Marker text command into the embedding editing area that drops a blue
marker at the specified location when this code embedding is applied

288

The combobox and the Plus [+] button to the right allow you to choose any other registered text command that will
participate in the code embedding expansion once it is applied.

To learn more on how to add your own code embeddings, please read the appropriate topic.

Creating custom Code Embeddings

CodeRush Code Embeddings are completely customizable. They are modified on the Embeddings options page in
the Options Dialog, where you can create your own. Let’s add a new code embedding to surround the selected code
with the logging capabilities.

We will use the DXCore Log class located in the DevExpress.CodeRush.Diagnostics.General namespace (in the Dev-
Express.CodeRush.Common assembly). The embedded code will look like this (C#):

01

02

03

04

05

06

07

08

09

10

11

12

13

Log.Enter(“Message”);

try

{

 // selected text goes here...

}

catch (Exception ex)

{

 Log.SendException(«An exception occurred», ex);

}

finally

{

 Log.Exit(«Message»);

}

1) Open up the Embedding options page:

289

2) Switch to the C# language if it is not active:

290

3) Click the Add Embedding button:

4) Type the Name and Caption of the new embedding:

5) Leave the Style and other options as is, then fill the code embedding expansion area:

291

6) Add the required text commands to the expansion:

That’s it. Let’s try to apply it (click the animation to enlarge):

292

Inverting a code block into its opposite using Selection Inversion

The Selection Inversion feature of CodeRush Pro allows you to invert the selected code block to the essential
opposite. For example, it can invert assignments so its expression assigns the left side; for loops, so they are iterated
in a different order; type cast expression, so an ‘as’ operator expression is converted into an explicit typecast, etc.

Selecting the ‘for’ loop in the following code:

and applying Selection Inversion will yield into the following code:

293

The feature is based on the regular expressions and easily customizable. You can add your own inverted regular
expressions on the Inversion options page. Also, there’s is a special DXCore component used to extend the feature
called SelectionInversionExtension that adds custom intelligent selection inversions.

To apply the Selection Inversion, you can utilize the following techniques:

•	 Use the default Ctrl+Shift+I shortcut: select a block of code that corresponds to one of the exist-
ing selection inversion expressions and press the shortcut to invert it.

•	 Use the Invert Selection code provider: select a block of code and perform the code provider to
invert the selected text:

See how you can customize and define your own inversion items on the Selection Inversion options page.

Customizing Selection Inversion and its predefined templates

The Inversion options page allows you to add, modify or remove inversion regular expressions that participate in
the Selection Inversion feature of CodeRush. Here is what it looks like:

294

The page is multi-language, so you need to select your working programming language in the Options Dialog. The
page consists of two parts:

1. The list of inversion items on the left

2. Parameters of the selected inversion on the right

The list on the left contains the available inversion items and a toolbar with the following buttons:

Button Shortcut Description

 Add Insert Adds a new inversion item to the list.

 Delete Ctrl+Delete Removes the selected inversion item from the list.

 Move Up Ctrl+Up Moves the selected inversion item up in the list.

 Move Down Ctrl+Down Moves the selected inversion item down in the list.

The order of items is important, because the first match will be used, so use the Move Up and Move Down items to
rearrange inversion items. Items on the top of the list have a higher priority over items on the bottom.

You can use the context menu of the list to move items up or down. The context menu also contains the Duplicate
menu item that allows you to copy and create a new inversion item based on the selected item:

295

On the right, you can specify the parameters for the selected inversion item, such as:

•	 Enabled - toggles the availability of the inversion item. If unchecked, the expression will not be
used to match the selected code when the Insertion feature is applied.

•	 Name - the name of the inversion item.

•	 Match With - the regular expression based on the DXCore Regular Expression language that
matches the selected text when the Inversion feature is applied. This text is used to compare and match with
the selected text block.

•	 Replacement - the regular expression that will be used to convert selected text.

•	 Comment - an optional comment for the inversion item.

•	 Test Area – the area where you can test your inversion items and see the produced result. Enter
the text you would like to test and click the Test button to see the resulting output replacement.

Quick Comment/Uncomment

The Selection Comment feature adds the capability to quickly comment or uncomment a multi-line block of code (or
any text in the code editor) via a single shortcut. Only one shortcut is used to comment and uncomment of the current
selection. The shortcut is easy to remember. For example, in Visual Basic it is (‘)(Apostrophe) and in CSharp (or
C++) it is (/) (Slash).

Here’s a sample:

You can customize shortcuts within the IDE | Shortcuts options page in the Options Dialog.

296

Smart Cut and Smart Copy

These CodeRush clipboard features allow you to take an identifier or a block of code, and put it into clipboard
without selecting it in advance. Just place the editor text caret at the identifier or at the start or end of a code block
and press the copy key (Ctrl+C or Ctrl+Insert) or the cut key (Ctrl+X orShift+Delete). This makes it easy to use
cut and copy operations to move, duplicate or delete contiguous blocks of code, like methods, properties, conditional
statements, loops, try/catch/finally blocks, comments, etc without selecting it first.

If the text caret is at the start or end of a code block, the entire block will be copied or cut (depending on the key you
pressed) into clipboard. CodeRush detects that there is no selection and it will create the most intelligent selection for
you:

Before:

After:

297

Note that the block of code is selected including the leading and trailing white space. This is the optional behavior
(see below). In case of a member or type declarations, the selection will include all support elements such as attri-
butes, xml doc comments as well:

Before:

After:

Otherwise, if the caret is at the identifier (name or type) the only identifier is copied (or cut):

298

Once the identifier is on the clipboard, other CodeRush features, such as Code Templates become very useful. For
example, if we copy the class name onto a clipboard, we can easily create a descendant for this class using the “c\”
code template:

299

Note that if the selection exists and you press the cut or copy key, the default Visual Studio behavior is performed, i.e.
the only selected text is being copied into clipboard as is. The same happens if the text caret is surrounded by white
space – the current line will be placed on the clipboard, which is the default Visual Studio cut and copy behavior
(optional, enabled by default).

You can disable or enable the Smart Cut and/or Smart Copy on the “Editor | Clipboard | Smart Cut(Copy)”
option page in the Options Dialog:

There are two additional options available:

•	 Include surrounding white space in smart selections

If this option is turned on, a Smart Cut (Copy) selection includes the leading and trailing white space of an active
block of code. Otherwise, it includes only the constructive parts of a code block.

•	 Include primitive literals in smart selections

This option affects the Smart Copy, Smart Cut and Paste Replace Word features when working with text strings.
If the option is enabled, CodeRush copies (cuts) or replaces an entire string including quotes. Otherwise, it replaces
only the word under the text caret inside of a text string expression.

Intelligent Paste

The CodeRush Intelligent Paste clipboard feature modifies the text from the clipboard before inserting it into
the code editor. An action hint with the name of the expansion appears once the suitable expansion is triggered on
the Paste (Ctrl+V) command.

300

For example, copying a field member into a clipboard and then pasting it on the next line will produce a read-write
property for the field:

Before:

1 private int myValue;

After:

Another example is when copying simple method invoke expression (method call), the entire void method declaration
will be pasted with markers:

Before:

1 ProcessMyValue();

After:

To execute Intelligent Paste, simply perform a usual Paste command bound to Ctrl+V or Shift+Insert shortcut
s preceded by copying a piece of code with a structure defined as an Intelligent Paste expansion. The list of such
expansions can be found on the Editor | Clipboard | Intelligent Paste options page in the Options Dialog. Intelli-
gent Paste is fully extensible through the options page, and lets you specify the precise conditions that trigger the
particular extension.

Here’s the list of built-in CodeRush Intelligent Paste expansions for CSharp language. Most of these expansions
are also defined for Visual Basic and C++ languages. Of course, you can easily add new expansions to any supported
language. Note that you can use DXCore text commands inside expansions.

301

Name Description
Assignment Converts a relational expression (e.g., “xxx < yyy”) to an assignment (e.g., “xxx

= yyy”).
Color Field from HTML Converts an HTML color string (e.g., “#FF0000″) to a new color instance (e.g.,

“Color.FromArgb(0xFF, 0×00, 0×00)”).
Color from HTML Converts an HTML color string (e.g., “#FF0000″) to a new color instance (e.g.,

“Color.FromArgb(0xFF, 0×00, 0×00)”).
Color from HTML (alpha=FF) Converts an HTML color string (e.g., “#FFAA0000″) to a new color instance

(e.g., “Color.FromArgb(0xAA, 0×00, 0×00)”).
Color from HTML (with alpha) Converts an HTML alpha-blended color string (e.g., “#80AA0000″) to a new

color instance (e.g., “Color.FromArgb(0×80, 0xAA, 0×00, 0×00)”).
Color Local from HTML Converts an HTML color string (e.g., “#FF0000″) to a new color instance (e.g.,

“Color.FromArgb(0xFF, 0×00, 0×00)”).
Create New Converts a field declaration (e.g., “private Hashtable myTable;”) into code that

constructs an instance of that identifier (e.g., “myTable = new Hashtable();”)
when pasted on an empty line inside a method or property.

Create New (prefixed field) Converts a field declaration (e.g., “private Hashtable _MyTable;”) into code that
constructs an instance of that identifier (e.g., “_MyTable = new Hashtable();”)
when pasted on an empty line inside a method or property.

Declaration Converts a statement that constructs a new identifier into a declaration.
Event Trigger Creates an event trigger for an event declaration.
Expression Converts an assignment to an expression when pasted inside parens or following

an assignment statement.
Identifier Dot Invokes Intellisense when pasting identifiers followed by a “.” inside code

blocks.
if block Converts an if-statement with an expression to the extracted expression when

pasted inside parens.
Is expression Converts a typecast to an “is” expression. Note that this expansion is disabled by

default.
Method (interface) Creates a new method when a method declaration from an interface is pasted on

an empty line inside a class or struct.
Property Creates a property from a field declaration.
Property (from interface) Creates a new property when a property declaration from an interface is pasted

on an empty line inside a class or struct.
Property (interface get) Creates a new property when a property declaration from an interface is pasted

on an empty line inside a class or struct.
Property (interface set) Creates a new property when a property declaration from an interface is pasted

on an empty line inside a class or struct.
Property (prefixed field) Creates a property from a declaration for a prefixed field (e.g., “_MyField”, or

“m_MyField”).
Property (prefixed readonly
field)

Creates a property from a declaration for a prefixed readonly field (e.g., “_My-
Field”, or “m_MyField”).

Typecast + New Var Creates a new local variable of the type tested in the “is” expression, and initial-
izes it to the identifier typecast as that type. Valid on empty lines in code blocks.

Void Method Creates a new method declaration when a method call is pasted on an empty line
outside a method.

302

WPF Color Field from HTML Converts an HTML color string (e.g., “#FF0000″) to a new color instance (e.g.,
“Color.FromRgb(0xFF, 0×00, 0×00)”).

WPF Color from HTML Converts an HTML color string (e.g., “#FF0000″) to a new color instance (e.g.,
“Color.FromRgb(0xFF, 0×00, 0×00)”).

WPF Color from HTML (al-
pha=FF)

Converts an HTML color string (e.g., “#FFAA0000″) to a new color instance
(e.g., “Color.FromRgb(0xAA, 0×00, 0×00)”).

WPF Color from HTML (with
alpha)

Converts an HTML alpha-blended color string (e.g., “#80AA0000″) to a new
color instance (e.g., “Color.FromArgb(0×80, 0xAA, 0×00, 0×00)”).

Intelligent Paste Options

There are two options pages for the Intelligent Paste CodeRush clipboard feature inside IDETools Options Dialog.
The first one defines the main expansions and the second one allows you to manage Intelligent Paste extensions.
Note the difference between “expansions” and “extensions”; in other words, extensions provide expansions. For
example, the “Regular Expressions” extension provides the main list of Intelligent Paste expansions from the first
options page:

This options page lists the main Intelligent Paste expansions available, and enables you to customize options for
each expansion.

The page consists of the expansions list on the left, and the options for the selected expansion on the right. Under the
list with expansions on the left there are two buttons: “New” and “Delete…“. These buttons are used for adding and
removing expansion items. As an alternative you can use the context menu available via right-clicking on the list and

303

choosing the single “Duplicate” menu item. This way you can easily add a new item based on the existing one and
modify its context, replacement and Match With values of the selected expansion.

Once you selected an expansion, the following options related to the expansion are available:

Option Description
Enabled If this option is on, the selected expansion under the Name label will be enabled

and CodeRush Intelligent Paste Engine will try to perform a replacement conversion
operation of the text on the clipboard, if appropriate.

Match With Specifies the clipboard text template using the build-in DXCore reg-ex aliases engine. If the
text from the clipboard matches this template, the expansion activates.

Replacement Specifies the code block pasted by the expansion instead of the initial clipboard text content.
Comment The additional information to describe the expansion. The value of this option does not affect

the expansion functionality.
Match across line
breaks

If this option is on, Intelligent Paste Engine compares each text line from the clipboard with
the template, and activates the expansion for each matched line.

Allow partial-line
matches

If this option is on, the expansion is activated, even if only a part of the clipboard content
matches the template. In this case, the expansion changes only the part that matches the tem-
plate.

Treat single
spaces as optional
whitespace

If this option is on, Intelligent Paste Engine treats single spaces as an optional whitespace
from the Match With and Replacement values. This allows you to enter these values easily,
which makes them more flexible in regard to whitespaces (tabs, spaces, several spaces in a
row, etc).

Preserve original
whitespace

Specifies whether whitespace from the clipboard is preserved in the replacement expansion.

Сontext Specifies the context where the expansion is available.

On the second options page Editor | Clipboard | Intelligent Paste Setup, the extensions that provide Intelligent
Paste expansions are listed:

304

There are four extensions shipped with CodeRush and Refactor!:

Name Description
Regular Expressions These expansions are listed on the first options page.
Declare Method Stub
Intelligent Paste

Invokes the Declare Method code provider to
construct the method with appropriate parameters
when method invoke expression is copied and then
pasted into the class or struct.

Extract Method
Refactoring

Invokes the Extract Method refactoring for the
selected block of code when it is pasted into a class
or struct.

Introduce Local
Refactoring

Invokes the Introduce Local refactoring for the
selected code expression when it is pasted into a
new line inside of the same member scope.

The Maximum # of lines to trigger option specifies the upper limit of the lines of the text on the clipboard for the
selected Intelligent Paste extension. If the clipboard contains a larger text content than specified with this option, the
extension is not triggered.

If you add a new Intelligent Paste extension using the DXCore Intelligent Paste Extension component, the new
extension will appear on this options page.

305

Paste Replace Word

Once you have a word (identifier) on the clipboard, you can easily replace any different word (identifier) with the one
on the clipboard using Ctrl+B shortcut. The Paste Replace CodeRush action will select the word (identifier) at the
caret before pasting in the contents of the clipboard, so you don’t have to select it first.

Here is an example. Consider that we have the Location property, which should be returning the default “Unknown”
value, but currently it returns null. Let’s see how the Paste Replace Word feature will be useful here:

1. Put the editor caret on the “Unknown” word

2. Press Ctrl+C to copy it into the Clipboard, using another Smart Copy clipboard feature

3. Put the editor caret on the “null” keyword

4. Press Ctrl+B to replace the keyword:

Clipboard History

Clipboard History is a visual multi-clipboard viewer and manager, which makes copying and pasting of data a
little easier. It allows you to extend the facility of Windows system’s clipboard, beyond its default capability and
the disadvantage that you can only copy once before pasting. The next time you copy or cut another snippet, you
overwrite the existing clipboard contents. CodeRush helps to keep the clipboard history that you can use to paste
any selected fragment again. You can have up to 64 independent fragments and work with each of them separately,
persisting these fragments across Visual Studio sessions for future use. If you copy a code fragment, Clipboard His-
tory will maintain its syntax highlighting as well:

306

To access the Clipboard History – press Ctrl+Shift+Insert or choose it from the Edit menu:

307

On the other hand, Visual Studio has a built-in feature called Clipboard Ring. The Clipboard Ring keeps track of
the last 20 items you have either cut or copied so you can reuse them over and over again. Repeatedly pressing Ctrl+-
Shift+V will cycle through the entries in the Clipboard Ring. Each time you press Сtrl+Shift+V, the IDE editor
replaces the last entry you pasted from the Clipboard Ring so that you end up with only the last one you selected.

So, what’s the difference between two? Let’s compare:

•	 Usability

For example, if you wanted to paste the 10th item in the clipboard ring, you need to press Ctrl-Shift-V 10 times. If
you don’t know what the position of the item in the ring, you have to press the shortcut numerous times, until you
find the item you need. Using the Clipboard History, all you need is to click once on the item you need.

•	 Visual presentation

On the other hand, there is another option for the Clipboard Ring so you don’t have to cycle through the clipboard
ring every time. You can use the Toolbox for this purpose, where you can drag the text you want to use in the future.
Visual Studio will create an entry in Toolbox, which can be pasted by dragging it from Toolbox or by double clicking
the toolbox entry. This functionality is almost the same as the Clipboard History, but take a look at the visual pre-
sentation of the copied text:

308

Overall, it’s up to you to choose what feature to use. But bear in mind, that there is another significant advantage
of the Clipboard History – it has code conversion capability for multi-language projects. For example, if you
copy CSharp code and try to paste it into Visual Basic source file, you can choose whether the code should be
converted into the target source file language (Visual Basic in this case):

On the Clipboard History options page in the Options Dialog, there are a few simple options available:

309

•	 Option whether to persist clipboard history across Visual Studio sessions

•	 Color of the clipboard history items selector

•	 Number of clipboard items to maintain (1 – 64) by choosing the rows and columns size

310

311

312

Chapter 7. Code modification providers

Create Descendant and Create Descendant (with virtual overrides)

The Create Descendant code provider shipped in CodeRush generates a descendant class for the active class,
providing overrides for abstract members, if any. The second version of the code provider named Create Descen-
dant (with virtual overrides), in addition to the Create Descendant, adds overrides for virtual members into a
descendant class.

Applying the Create Descendant for the following abstract class:

1

2

3

4

5

public abstract class Logger

{

 public abstract void GetMessage(int index);

 public abstract void SendMessage(string msg);

}

Will generate the following descendant declaration:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

public class LoggerDescendant : Logger

{

 public LoggerDescendant()

 {

 }

 public override void GetMessage(int index)

 {

 throw new NotImplementedException();

 }

 public override void SendMessage(string msg)

 {

 throw new NotImplementedException();

 }

}
If a class contains virtual members you can choose whether they should be overridden by applying the corresponding
provider. Having the following class:

313

1

2

3

4

5

6

7

public class Calculator

{

 public virtual void Add() { }

 public virtual void Sub() { }

 public virtual void Mul() { }

 public virtual void Div() { }

}

Applying the Create Descendant (with virtual overrides) will result in generating the following class:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

public class CalculatorDescendant : Calculator

{

 public CalculatorDescendant()

 {

 }

 public override void Add()

 {

 base.Add();

 }

 public override void Sub()

 {

 base.Sub();

 }

 public override void Mul()

 {

 base.Mul();

 }

 public override void Div()

 {

 base.Div();

 }

}

Both code providers add a default public parameterless constructor for the new class, and drop a marker at the starting
source position. The new class is placed above the current class in the same source file.

314

Create Ancestor

The Create Ancestor code provider generates a new base class declaration for the active class. The generated base
class will be declared above the active class and the active class becomes a descendant of the new base class. The
new base class has the same visibility as the active class and contains the default public parameterless constructor. All
identifiers and references of the base class are linked together for easy renaming.

For example, applying the Create Ancestor for the following class:

1

2

3

4

public class Logger

{

 public Logger() { }

}

Will result in the following result:

01

02

03

04

05

06

07

08

09

10

11

public class LoggerBase

{

 public LoggerBase()

 {

 }

}

public class Logger : LoggerBase

{

 public Logger() { }

}

Note that the code provider won’t be available when the active class already descends from another base class.

Creating interface implementers

A class that implements an interface should implement all members of that interface. Members of implemented inter-
faces can be declared in two ways: implicit or explicit. That is why there are two versions of the Create Implement-
er code provider in CodeRush:

•	 Create Implementer (implicit)

•	 Create Implementer (explicit)

The Create Implementer (implicit) code provider creates a class that implements an interface implicitly. You
can apply this code provider on the interface itself by placing the editor caret at the name of the interface:

315

or on the reference to the interface in the code:

The newly declared implementer is placed according to the Type Declarations code style settings. Here is the impled-
menter code after code provider is performed (implicit version):

316

The second version of the code providers does the same as the first version, but implements an interface members
explicitly:

317

Implementing the IDisposable pattern

The IDisposable Pattern is used to release and close unmanaged resources such as files, streams, and handles as
well as references to managed objects that use unmanaged resources, held by an instance of the class. For classes
that require a resource cleanup, we recommended following the IDisposable pattern, which provides a standard and
unambiguous pattern. The pattern has been designed to ensure reliable, predictable cleanup, and to prevent temporary
resource leaks.

There are several options to consider when implementing the IDisposable pattern. Let’s take a look at the following
code sample:

318

The problem with this class is that StreamReader and StreamWriter objects use unmanaged resources. If this class is
instantiated, and the later is allowed to simply go out of scope, the objects may not be cleaned up immediately and
resources will be locked unnecessarily.

To implement the IDisposable pattern, we should first specify the corresponding interface as one of those that our
class implements:

The interface contains only a single Dispose method. This is what the public Dispose() method implementation looks
like:

The method calls the second parameterized Dispose() method, passing ‘true’ as an argument to indicate that the meth-
od has been called manually. Then, it calls the SuppressFinalize() method of the garbage collector, which prevents the
finalizer from executing and limits any associated performance degradation, because finalization increases the cost
and duration of your object’s lifetime since each finalizable object must be placed on the finalization queue when it is
allocated.

The order of two calls inside the Dispose is important, as it ensures that the GC.SupressFinalize()call is only invoked
if the Dispose operation is completed successfully. When Dispose calls Dispose(true), the call may fail while an ex-
ception is thrown, but when Finalize is called later, it calls Dispose(false). In reality, these are two different calls can
execute different portions of the code, even though Dispose(true) fails, Dispose(false) may not.

The second version of the Dispose(bool disposing) method accepts a Boolean parameter that indicates whether the
code has been called manually or automatically. If called manually, all managed and unmanaged resources can be re-
leased. If the method was called automatically via the garbage collection process, the managed resources will already
have been dealt with, so only the unmanaged resources are cleared.

When implementing the Dispose method, we must ensure that all held resources are freed by propagating the call
through the containment hierarchy. To give the base classes a chance to cleanup resources, it is required to invoke the
base class’ Dispose(bool disposing) method as the last operation, if one is available. Make sure to pass the same value
of ‘disposing’ to the base class’ method.
So, the method implementation for the Logger class looks like this:

319

Because the Dispose method must be called explicitly, objects that implement IDisposable must also add a finalizer,
if a class contains unmanaged resources, to handle the release of those resources when Dispose is not called. The
finalizer must utilize the Dispose method with the ‘disposing’ parameter set to ‘false’. The false value indicates that
the method was not called manually:

Don’t forget to declare the _Disposed field as follows which indicates the state of the object whether it is disposed or
not:

As always, CodeRush provides a couple of code providers that allow you to easily implement the IDisposable pattern
without having to remember the entire pattern, using the corresponding Implement IDisposable code provider
available on the class name:

320

you can automatically generate the required code to release all unmanaged resources. Just choose the position where
you would like to put the pattern’s code:

and you are done:

321

If you later create new fields that should be disposed, you can utilize the Dispose Fields code provider:

322

As a result, the Dispose Fields code provider will add the required disposal code for the specified field as illustrated
in the preview hint above.

Using Disposable Objects

Implementing the IDisposable pattern is very important when creating objects that hold disposable resources, but this
pattern does not dictate you how to use an instance of the resulting class. Unfortunately, there is no way to force de-
velopers to call Dispose explicitly when they are done using it, or to force them to use the proper exception handling
mechanism to make sure that the Dispose is called even when an exception is thrown.

So, when you use an object that accesses unmanaged resources, it is a good practice to create the instance with a
using statement. The using statement automatically calls the Dispose method on the object when the code that is
using it has completed. You can create a using statement by utilizing the Introduce Using Statement code provider.
For instance, for this code:

the code provider will produce the following code:

323

Once a class has been disposed, all of its resources should be considered as unreachable. Attempts to continue using
the class may be invalid and should be prevented. If the object has been disposed, we can throw an ObjectDispose-
dException, providing the object name, to indicate the error. This check should be made in all public members of the
class.

Converting methods to functions or procedures

The simplest type of method is one that performs a task without requiring any parameters and without returning any
information – let’s call them procedures (or void methods). Methods that use some type as the return value – are
functions.

Sometimes, when we declare a method with a return value, we may realize that we don’t actually need this return
value, and instead, need a simple void method that does not return anything. On the other hand, we marked a method
as void, but may require it to be a function, returning a value.

In this case, to help you in converting a void method into a function and vice versa, CodeRush Pro suggests the correl-
sponding code providers:

•	 Convert to Function

•	 Convert to Procedure

Both are opposites of each other. Before you apply them – you can see the resulting preview code.

The Convert to Function code provider changes a method that returns void (or a Sub in VB) into a function that
returns an appropriate type. The type is inferred from the returning value. This code provider will help you easily add
a return type for a method and guess its correct type, for example:

The Convert to Procedure code provider converts a private function that returns some value into a method that
returns void (or a Sub in VB). It will also change all “return something” statements into simple returns, for example:

324

Converting unimplemented properties

CodeRush has two code providers that allow you to convert unimplemented properties into a property with backing
store field or into an auto-implemented property quickly:

•	 Convert to Property with Backing Store

•	 Convert to Auto-implemented Property

The code providers are useful if you have implemented an interface, for instance:

and you are going to provide implementation for properties of the interface:

325

Choose the Convert to Property with Backing Store code provider if you’d like to create a backing store field and
remove it from the property:

Choose the Convert to Auto-implemented Property code provider if you do not need a backing store field and
would like to have an auto-implemented property instead. This is the resulting code after the code provider is applied
on three other properties:

326

Quick ways to add and remove a set/get property accessor

A property without a ‘set’ accessor is considered read-only:

You can not assign a value to this property until you have a ‘set’ accessor to this property. The set accessor is similar
to a void method with an implicit parameter called value, whose type is the type of the property. If a property does not
yet have a set accessor, you can easily add it using the Add Setter code provider:

As a result, a property has a read-write access:

327

The code provider will automatically determine the field reference used as a backing store and assign a value to it.

You can also perform the opposite operation – convert a read-write property to a read-only property by using the
corresponding Remove Setter code provider. The code provider is available when a value is never assigned to a
property. In other words, the code provider safely removes the set accessor if it is not referenced in the code:

The latter code provider is useful to refactor and cleanup your code, eliminating undesirable property use.

If the property is write-only, having only the setter accessor, you can use the Add Getter code provider, which is
similar to the Add Setter, but adds the getter accessor instead:

328

Code fixes for code issues for switch (select) statements

You might have already learned that CodeRush suggests several code issues that highlight the switch (Select in VB)
statement with hints and warnings when it has suspicious code. For example, when the switch statement handles only
a subset of the possible enumeration values it is checking for, this may be a sign of incomplete code.

Until recently, there were no code fixes of those code issues. Now, they appear:

•	 Add Missing Case Statements – adds all missing case statements to the switch statement.

•	 Add Default Case Branch – adds the default case branch to the switch statement.

Consider the following code:

The DayOfWeek enumeration contain seven enumeration elements for each day of a week. In the code above one of
the days is missing (Wednesday). The expression of the switch statement is highlighted with a code issue of the sug-
gestion type, and the following hint appears if you hover over it:

There are two code issues listed in the hint and both have the corresponding fixes which can be seen in the preview
hint before applying:

329

Add Missing Case Statements

Add Default Case Branch

330

Reverse For Loop

When working with arrays and lists enumerating all of its items we usually create a for loop statement as follows:

But what if we want array items to be listed in reverse? Sometimes, we want to create a loop that starts from a larger
number and decrements the iterator variable’s value after each iteration until zero is reached. In this case, we can
easily reverse the loop using the Reverse For Loop code provider:

Once it is applied, it will change the order in which items are enumerated in the loop as illustrated in the preview hint:

The code provider can invert loops written in different kinds of ways in any supported programming language.

Add Initialization

The Add Initialization code provider inserts an initialization of the selected field or auto-implemented property
to each constructor of the active type. The code provider is useful when you want to initialize those objects with a
different default value:

331

Once the code provider is applied, you will get the following initialization generated in each constructor:

332

Changing an explicit cast-expression to an ‘as’ operator and back

Objects can be converted from one type to another, assuming that the types are compatible. Often this is achieved
using implicit conversion or explicitly with the cast operator. To perform an explicit casting, there are two approaches
used:

•	 a cast-expression

•	 an ‘as’ operator

A cast-expression is used to explicitly convert an expression to a given type. The cast operation forces the conversion,
possibly losing some data along the way. Care must be taken, as it is possible to cause a run-time error, or receive
unpredictable results when the destination casting type is too small to receive a large value of the cast expression.

The ‘as’ operator is used to explicitly convert a value to a given reference type or nullable type. Unlike the cast ex-
pression, the ‘as’ operator never throws an exception. Instead, if the indicated conversion is not possible, the resulting
value is null.

To convert between explicit type cast approaches, you can use two code providers shipped in CodeRush Pro:

Use Implicit type cast

Converts an explicit type cast expression into an ‘as’ operator expression:

Use Explicit type cast

Converts an ‘as’ operator expression into an explicit type cast expression:

333

Working in two-dimensional space

There are two code providers that are useful when you have written the code to work in one dimension, but if you
want to create a similar code to work in a two-dimensional space, here is an example:

The code is working with rows of a grid and draws the background for them. Consider working with columns in-
stead. Here is what the Rotate 90 Degrees code provider will produce:

334

The code provider modifies the code working in two-dimensional coordinate space, so it operates at a 90-degree shift.
In other words, it changes the corresponding properties into neighborhood properties, such as:

•	 X -> Y, Y -> X;

•	 Height -> Width, Width -> Height;

•	 Horizontal -> Vertical, Vertical -> Horizontal;

•	 Left -> Top, Top -> Left, Right -> Bottom, Bottom -> Right;

•	 Column->Row, Row-> Column, Rows->Columns, Columns->Rows.

The Mirror Code code provider, in its turn, modifies the code working in two-dimensional coordinate space, so it
operates at a -180degree shift:

335

The code providers changes + to -, ++ to — as well as – to + and — to ++. It also converts Left to Right, Top to Bot-
tom the same way as the Rotate 90 Degrees code provider does.

Embed Selection

The Embed Selection code provider allows you to wrap the selection into the predefined code blocks from the Code
Embedding feature of CodeRush. The code provider is available when a whole line or multiple lines are selected and
at least one embedding is predefined for the current language.

To apply the code provider, select the text or a code block in the code editor, and choose one of the available embedl-
dings from the Embed Selection menu:

336

Invert Selection

The Invert Selection code provider is used to apply the Selection Inversion feature of CodeRush. Once you select a
block of text and there is a match with one of the predefined inversion items, the provider becomes available:

337

After it is applied, the selected block is replaced with its opposite or any other block you manually created on the In-
version options page.

Add XML Comments

Programming languages such as C# and Visual Basic support the creation of XML Documentation Comments,
allowing developers to quickly annotate and document their source code to keep the documentation in a standard
format and to gain benefit from the information as you code. Documentation is important to ensure that developers
can quickly learn and use the source code.

Developers may use XML Comments to document code on user-defined types, including classes, structures, dele-
gates, and enumerations. In addition, XML Comments may be attached to members, including fields, events, proper-
ties, indexers, and methods. In other words, these are specially formatted comments that decorate elements of your
code. When you build your project with the corresponding option enabled, the XML Comments are extracted and
combined in an XML file that resides in the same folder as the compiled application.

Documenting the source code should be an important part of the development process. If you get in the habit of docu-
menting your source code as you write it, you will find that you can produce fully documented code much faster than
if you write code and try and go back and create documentation later.

To help you document the source code, CodeRush provides the Add XML Comments code provider which may be
very helpful for these purposes, if, for instance, you apply it to an existing method:

The code provider will generate the XML Documentation with summary, param, and return value tags as follows:

338

On the overridden members, the code provider will first look for the base member in the ancestor class. If the base
member already provides XML documentation, the code provider will copy it to the member that overrides it:

Additionally, if a member implements the interface member from a referenced assembly, and the latter one provides
the documentation in the corresponding XML file, the code provider will load it from the XML file for you, e.g.:

339

As a result, when you type this method call, you will see a nice hint with the corresponding documentation:

Don’t forget to enable the appropriate option to generate the XML documentation file when you build the project in
the project properties window:

340

Add Contract

Add Contract code provider adds conditions (contracts or guard code) for a validation of the active method
parameters. You can choose the preferred contract via the sub-menu of the Add Contract:

Contracts represent some kind of obligations for the method parameters and its return value. Consider
this Main function written in CSharp:

1

2

3

4

5

public static int Main(string[] args)

{

 Console.WriteLine(«Amount of args passed: « + args.Length);

 return args.Length;

}
or in Visual Basic:

1

2

3

4

Public Shared Function Main(ByVal args As String()) As Integer

 Console.WriteLine(«Amount of args passed: « + args.Length)

 Return args.Length

End Function

The method accepts a string array and returns the integer as a result. These obligations can be treated as contracts:

•	 you have to pass a single array of strings as an argument to this method: you can’t pass additional
arguments, and you can’t pass an array of different type, e.g. an array of integer type.

•	 you are not able to treat return result as a different type other than integer, for example, as a string
type.

Now, additional questions can arise to this method that may represent other contracts:

341

•	 Can the method take ‘null’ (CSharp) or ‘Nothing’ (Visual Basic) as an argument?

•	 Can the method take an empty array that don’t contain elements at all?

•	 How many items in the array the method expects?

•	 Can item of an array argument be “nullness”?

•	 Can item of an array argument be an empty string?

•	 Can the return result of the method be ignored?

The Add Contract code provider is intended to help developers to add these additional contracts. Here’s the list of
available contracts:

Contract name Description
Assert Contract Checks for a condition; if the condition is false, follows the escalation policy set by

the analyzer and displays the specified message.
Assume Contract Instructs code analysis tools to assume that a condition is true, even if it cannot be

statically proven to always be true, and displays a message if the assumption fails.
Ensures Contract Specifies a post condition contract for a provided exit condition and a message to

display if the condition is false.
Invariant Contract Specifies an invariant contract for the enclosing method or property, and displays a

message if the condition for the contract fails.
Requires Contract Specifies a precondition contract for the enclosing method or property, and displays

a message if the condition for the contract fails.
Exit Method Generates return statements to validate active method parameters in runtime.
Throw Exceptions Generates throw exception statements to validate active method parameters in

runtime.
Use Assertion Generates debug assertions to validate active method parameters in runtime.

The first five contracts (Assert, Assume, Ensures, Invariant, Requires) are available in Visual Studio 2010 only (the
project must target the .NET 4.0 (and higher) version as well). These contracts provide a language-agnostic way to
express coding assumptions in programs. They take the form of pre-conditions, post-conditions, and object invariants,
and are used to improve testing via runtime checking.

These contracts generate the following code for the array parameter correspondingly:

CSharp:

1

2

3

4

5

Contract.Assert(args != null && args.Length != 0, “args is null or emp-
ty.”);

Contract.Assume(args != null && args.Length != 0, “args is null or emp-
ty.”);

Contract.Ensures(args != null && args.Length != 0, “args is null or emp-
ty.”);

Contract.Invariant(args != null && args.Length != 0, “args is null or emp-
ty.”);

Contract.Requires(args != null && args.Length != 0, «args is null or emp-
ty.»);

342

Visual Basic:

1

2

3

4

5

Contract.Assert(args IsNot Nothing AndAlso args.Length <> 0, “args is nothing
or empty.”)

Contract.Assume(args IsNot Nothing AndAlso args.Length <> 0, “args is nothing
or empty.”)

Contract.Ensures(args IsNot Nothing AndAlso args.Length <> 0, “args is noth-
ing or empty.”)

Contract.Invariant(args IsNot Nothing AndAlso args.Length <> 0, “args is
nothing or empty.”)

Contract.Requires(args IsNot Nothing AndAlso args.Length <> 0, «args is noth-
ing or empty.»)

The three other contracts (Exit Method, Throw Exceptions, Use Assertion) represent defensive statements called
“guard code”. They act like a shield, keeping us from making obvious mistakes later in the method. For example, by
checking that the array isn’t null and that it’s at least one element in length, we believe that the code in the remainder
of the method will run smoothly or at least without exceptions. These tests will allow us to check that the array passed
to the method is structured and populated just as we require.

These contracts generate the following code for the array parameter:

Exit Method:

CSharp:

1

2

3

int result = 0;

if (args == null || args.Length == 0)

return result;

Visual Basic:

1

2

3

4

Dim result As Integer = 0

If args Is Nothing OrElse args.Length = 0 Then

 Return result

End If

Throw Exceptions:

CSharp:

1

2

if (args == null || args.Length == 0)

throw new ArgumentException(«args is null or emp-
ty.», «args»);

343

Visual Basic:

1

2

3

If args Is Nothing OrElse args.Length = 0 Then

 Throw New ArgumentException(“args is nothing or empty.”, “args”)

End If

Use Assertion:

CSharp:

1 Debug.Assert(args != null && args.Length != 0, «args is null or empty.»);

Visual Basic:

1 Debug.Assert(args IsNot Nothing AndAlso args.Length <> 0, «args is nothing
or empty.»)

You are able to extend the list of available contracts by adding your own using the ContractProvider DX-
Core component via creating a new IDE Tools plug-in.

Add Missing Constructors code provider

The Add Missing Constructors code provider from CodeRush allows you to add constructors from the ancestor
class to the current class or structure, which are not implemented.

Imagine you are creating a descendant of the System.Exception class:

The Add Missing Constructors is available when the editor caret is located on the name of the class or its ancestor:

After the code provider is applied, all constructors from the base class are added to your implementation:

344

Constructors will call the appropriate base type constructors and have a marker inside of their bodies to navigate
between them easily.

This feature is a code fix for the corresponding CodeRush code issues:

•	 Can implement base type constructors

•	 Base type constructors are not implemented

Convert to Integer

The Convert to Integer code provider allows you to wrap an expression returning a non-integer value to Math.
Ceiling, Math.Floor, or Math.Round. Consider the following code sample:

The method returns the sum of two input parameters as an integer. However, both input parameters are of the ‘double’
type. In this case, Visual Studio shows an error:

345

To fix this error, we can apply the Convert to Integer code provider and choose the rounding method:

Once the code provider is applied, the code is modified according to the preview hint:

Create Event Trigger

The Create Event Trigger CodeRush code provider generates an event trigger for the specified event. An event
trigger is a single method that is used to raise an event. Although it is not strictly necessary to create such a trigger, it
is useful, as it makes maintenance of the code simpler.

Once the code provider is applied, you can select the target position where the event trigger should be declared. The
event trigger will be named OnEventName (where EventName is the name of the original event) and will be ‘virtual’,
so derived classes can override the functionality and alter the manner in which events are fired:

Note that the protected OnEventName method allows derived classes to override the event without attaching a
delegate to it. A derived class must always call the OnEventName method of the base class to ensure that registered
delegates receive the event.

346

Reference Assembly

The Reference Assembly code provider is a simple coding helper which allows you to add an assembly reference if
one does not exist for the type reference under the editor caret. The code provider is connected to the CodeRush Code
Issues feature, so the editor caret should be located in the ‘Undeclared element’ code issue, for instance:

The code provider searches for the full type name under the editor caret and adds the required assembly reference
once applied:

so, the project no longer misses the assembly:

The code provider only searches in the several standard .NET assemblies.

347

Remove Region Directives

This simple code provider, as the name says, removes the two lines of region directives:

•	 #region and #endregion lines in CSharp

•	 #Region and #End Region lines in Visual Basic

•	 #pragma region and #pragma endregion lines in C++

It is available on any of the two directives – either starting or ending:

The opposite of this code provider is the Auto Create Region feature.

Code provider to format the String.Format call output

The String.Format call is the best approach for outputting information for the user to read. It replaces the format
items in the specified template string with the string representation of the corresponding objects. The template string
contains text that is desired in the final string and one or more format item placeholders, which will be replaced with
other values passed as arguments to the String.Format call as either variable references or other literals.

When inserting values into format item placeholders, the values can be formatted by adding numerous format spec-
ifiers within the placeholders. A format specifier is an optional string of formatting codes. There are standard and
custom format specifiers for formatting numbers, dates and times, and enumerations. Here are some of the available
format specifiers:

Numeric Format Specifiers

Character Description Usage Example Output
c Currency {0:c} $12,345
d Decimal (whole number) {0:d} 12345
e Scientific {0:e} 1.234500e+004
f Fixed Point {0:f} 12345
g General {0:g} 12345
n Thousand Separator {0:n} 12,345
r Round Triple (decimal only) {0:r} System.FormatException
x Hexadecimal (int only) {0:x4} 3039

348

Date/Time Format Specifiers

Date and Time format specifiers are dependant on the user’s locale, so the output may be different.

Character Description Usage Example Output
d Short date {0:d} 04/09/2012
D Long Date {0:D} 04 September 2012
t Short time {0:t} 15:43
T Long time {0:T} 15:43:55
f Full Date/Time {0:f} 04 September 2012 15:43
F Full Date/Time (long time) {0:F} 04 September 2012 15:43:55
g General Date/Time {0:g} 04/09/2012 15:43
G General Date/Time (long time) {0:G} 04/09/2012 15:43:55
M or m Month Day {0:M} 04 September
R or r RFC1123 {0:r} Tue, 04 Sep 2012 15:43:55 GMT
s SortableDate/Time {0:s} 2012-09-04T15:43:55
u Universal Full Date/Time {0:u} 2012-09-04 15:43:55
U Universal Full Date/Time (long time) {0:U} 04 September 2012 15:43:55
Y or y Year Month {0:Y} September 2012

O or o Round-Trip
Date/Time {0:O} 2012-09-04T15:43:55.7770000

Custom Date/Time Format Specifiers

Format Description Usage Example Output
dd Day {0:dd} 04
ddd Day Name {0:ddd} Tue
dddd Full Day Name {0:dddd} Tuesday
f, ff, … Second Fractions {0:fff} 777
gg, … Era {0:gg} A.D.
hh 2 Digit Hour {0:hh} 03
HH 2 Digit Hour, 24hr Format {0:HH} 15
mm Minute 00-59 {0:mm} 43
MM Month 01-12 {0:MM} 09
MMM Month Abbreviation {0:MMM} Sep
MMMM Full Month Name {0:MMMM} September
ss Seconds 00-59 {0:ss} 46
tt AM or PM {0:tt} PM
yy Year, 2 digits {0:yy} 12
yyyy Year {0:yyyy} 2012
zz Timezone offset, 2 digits {0:zz} -05
zzz Full timezone offset {0:zzz} -05:00
: Separator {0:hh:mm:ss} 15:43:55

349

/ Separator {0:dd/MM/yyyy} 04/09/2012

General Format Specifiers

You can also use custom format strings, such as decimal placeholders, and leading and trailing characters. In these
examples, we pass in 12345.12.

Character Description Usage Example Output
0 Zero Placeholder {0:00.0000} 12345.1200
Digit Placeholder {0:(#).##} (12345).12
. Decimal Point {0:0.0} 12345.12
, Thousand Separator {0:0,0} 12,345
% Percent {0:0%} 1234512%
e Exponent Placeholder {0:00e+0} 12e+3

Some useful examples

Format Usage Example Output
0:000-00-0000 SSN 012-34-5678
0:(###)###-#### US Phone Number (555)555-5555
0:#-(###)###-#### US Phone Number 1-(555)555-5555
0:1-(###)###-#### US Phone Number 1-(555)555-5555

As you can see there are too many of format specifiers to remember. But CodeRush may help you to format the
template string without necessity to remember any of the format specifiers. The Format Item… code provider is
available on the format item placeholder:

Once executed, it shows you the String.Formatter dialog where you can choose the format specifier you prefer and
see the sample output before it is applied:

350

The dialog allows you to easily apply a format specifier to the template string. The corresponding format specifiers
are enabled automatically based on the value type passed as argument into the String.Format call. The feature might
be very helpful if you forgot any of the format specifiers and want to apply a custom string output.

The String.Formatter has been built quickly in front of the users in the CodeRush Feature Workshop Webinar series.
You might want to review them to learn more on how to build great features quickly. There are two parts:

•	 CodeRush Feature Workshop: Improving String.Format (Part 1)

•	 CodeRush Feature Workshop: Improving String.Format (Part 2)

Seal Class

This is one of the simplest code provider operations which simply marks the active class as ‘sealed’ (CSharp) or
‘NotInheritable‘ (Visual Basic). The sealed modifier is used to prevent inheriting from a class. For example, this can
be useful when creating ‘helper’ classes containing utility methods that should never be extended by overriding the
existing functionality. Another benefit of this code provider is that it enables a hypothetical run-time optimization,
because having a sealed class known to never have any derivations; it is possible for the compiler to transform virtual
function member invocations into non-virtual which take less time to perform.

CSharp preview:

351

Visual Basic preview:

352

353

354

Chapter 8. Code navigation utilities

Markers

Markers are navigation placeholders that remember important locations inside your source code you’ll need to move
to in the future. In most cases, they look like little triangular glyphs in the IDE’s code editor:

Markers are stack-based. When you collect a marker, it pops off the stack. You can jump back at any time to the top
marker on the stack by pressing Esc key (or Alt+End).

Markers can be of the following types:

•	 Hard Marker (red triangle) – is dropped manually onto the current caret position using the
default Alt+Home key. They will remain until collected, regardless of any activity on the line they sit on.
Currently, manual dropping and manipulating of markers is only available in CodeRush Pro. But there’s
awork-around for other products if you wish to apply this feature.

•	 Soft Marker (blue triangle) – is dropped automatically by CodeRush and/or Refactor! (e.g.
through a template expansion, selection embedding, or whenever you apply a refactoring or code provider
that takes you away from the original location, etc). This kind of marker will dissolve and vanish from the
stack if the line on which they are resident is altered in any way.

•	 Selection Marker (color brackets) – is dropped manually onto the current selection. It
completely restores the selection you had before, once you collect it.

Invisible Marker – is dropped onto the current position when you use navigation features such as Tab to Next
Reference or Quick Navigation. This marker is not displayed in the code editor, and is used to restore your original
location before you started using the navigation features.

Markers provide the following features:

Feature Default shortcut Description
Collect Marker Esc (Alt+End) Moves the caret* to the topmost marker within the stack, and removes this

marker.
Drop Marker Alt+Home Drops a marker at the current caret position.
Swap Marker Shift+Alt+Home Moves the topmost marker within the stack to the current cursor position,

and moves the caret to the previous position of the marker.
Collect Marker
and Paste

Shift+ESC Moves the caret to the topmost marker within the stack, removes this
marker and pastes the contents of the clipboard to the new caret position.

Select Marker Shift+Alt+Page Up Selects the code section from the current caret position to the topmost
marker within the stack.

355

Collect Marker

When marker is collected, a circle (like the image above) appears, and starts narrowing until it finally hides. The
animation is intended to catch your attention, so you see what happened, instead of looking around the screen where
your caret ended up.

Collect Marker and Paste

If the clipboard contains code that you want to paste at a recently-dropped marker, you can jump back to the marker
and paste in a single action by pressing Shift+Esc.

Swapping markers

You can even use markers to work in two places at once (alternating between two important locations with a single
keystroke), and you can also use them as visual reminders of unfinished code. Often when creating new code, you
want to reference another section of code while you work. Usually when this happens, the location where you want to
build the new code is far from the source. Markers can solve this problem elegantly. Here’s how:

1. Press Alt+Home to drop a marker at the first location where you want to be. Copy anything to the
clipboard from this location, if needed.

2. Navigate to the secondary location.

3. Do what you need at the secondary location until you need to return to the original location.

4. Press Shift+Alt+Home to execute the Swap Marker feature. This will exchange the caret with
the topmost marker on the stack, replacing the topmost marker with a new one (positioned at the caret
location where you just pressed Shift+Alt+Home).

5. Now, do what you need at the original location (e.g. copy something to the clipboard).

6. When you’re ready to return to secondary location, press Shift+Alt+Home again.

7. Repeat steps 3-6 as often as you like, to get the work done.

This is an area where the dynamic nature of markers really excels over static bookmarks. All you need to do is
drop a marker at the primary location and press Shift+Alt+Home from the secondary location. As you work down
through each respective section of code, the markers move with you, always dropping at the point where you stopped
working.

Markers – Comparison with Visual Studio Bookmarks

If you are already proficient with Visual Studio bookmarks, you might be wondering if CodeRush markers offer any
compelling benefits over bookmarks. Indeed, markers offer a number of improvements over the basic bookmarks
included with Visual Studio. Here’s a quick overview of the differences between markers and Visual Studio
bookmarks.

Feature Markers Visual Studio Bookmarks
Marks a line for later
visitation

(VS bookmarks are drawn in the widget column, and are prone to
being obscured by breakpoints and other widgets)

Remembers column
position

 (the caret is always positioned at first column)

Remembers view position (bookmark is always centered)

356

Stack-based, allowing
tracing of steps

 (bookmarks are navigated in line number order)

Move quickly between
two locations

(only if the two locations are both in the active file (and there are only
two bookmarks in that file)

Bookmarks

When you work on large projects you may need to revisit several areas of your code on a regular basis. CodeRush aln-
lows you to store such important locations in the code and move back to them in the future by using bookmarks.
Visual Studio provides a similar bookmarks feature, which allows you to mark places in your code that you would
want to come back to. Let’s see what differences between the CodeRush and Visual Studio bookmarks are.

Appearance

This is what Visual Studio (VS) and CodeRush (CR) bookmarks look like:

A Visual Studio bookmark appears as a square-shaped glyph in the margin at the left of the code. There is also an
option (uncheck the Options | Text Editor | Indicator margin option, then go to Fonts and Colors and change the
background color of the Bookmark display item) for VS bookmarks to highlight the entire marked line, so it might
look like this:

CodeRush bookmarks have an index indicator starting from 1 to infinity. It allows you to visually remember several
bookmarks and their associated position:

VS bookmarks allow you to bookmark a line in your code, where as CR bookmarks may store an exact position of
the editor caret, so you don’t have to move an editor caret later when you get back to a bookmark.

357

Toggle/Navigate

You can add and/or remove CR and VS bookmarks via a keyboard shortcut. Once a CR or VS bookmark is added, it
is persisted between Visual Studio sessions.

CodeRush allows you to easily switch between the first ten (0..9) bookmarks at any time by hitting the specific short-
cut. You can setup additional shortcuts to navigate to other particular bookmarks (10…~) on the Shortcuts options
page in the Options Dialog.

VS bookmarks, on the other hand, do not have an index and have no associated shortcuts to navigate to the specific
bookmark, but, instead, provide a tool window (View | Other Windows | Bookmark Window) that enumerates all VS
bookmarks:

Hitting a particular shortcut might be faster in navigating to the specific location. VS bookmark feature only allows
you to navigate between next and previous bookmarks using shortcuts.

VS bookmarks actions are also available on the Text Editor toolbar:

and the Edit | Bookmarks menu item.

Shortcuts

The following shortcuts are used for bookmarks:

Shortcut CR VS
Toggle bookmark Ctrl + Plus Ctrl+K, Ctrl+K
Toggle bookmark with a specific index (number) Ctrl + Alt + Number -

Remove last bookmark Ctrl + Minus -

Move to next bookmark Ctrl + Alt + Right Ctrl+K, Ctrl+N
Move to previous bookmark Ctrl + Alt + Left Ctrl+K, Ctrl+P
Move to specific bookmark Alt+Number -
Clear all bookmarks - Ctrl+K, Ctrl+L

358

Comparison

Here is the comparison table for mentioned bookmark capabilities:

Feature CR VS
Toggle bookmark via shortcut

Toggle bookmark via mouse click

Navigation to particular column

Navigation to particular bookmarks

Visual index indicator

Tool Window

Toolbar

Persistence between sessions

Conclusion

CodeRush bookmarks may be faster to use because they have shortcuts to navigate to the specific bookmarks and
have more precise navigation. If you use bookmarks extensively, Visual Studio bookmarks can be better organized
with an extra level of organization using folders inside the Bookmarks tool window.

Tab to Next Reference

The Tab to Next Reference feature is the simplest and one of the most powerful navigation features of CodeRush.
It allows you immediately see all references and navigate among them with ease. As the name says, the single Tab
shortcut is used to navigate to the next reference of an identifier or a type reference under the editor caret. Hitting the
Tab key again will move you to the next reference cyclically, in other words, you can tab to the next reference over
and over again, even if you come back to the first reference where you started.

The underline visual indicator is used to highlight navigation references inside the code editor. By default, it has a
pink color (which is customizable):

You can also use the Shift+Tab shortcut to navigate backward to the previous reference, or the Escape key to move
back to the location where you started. The feature works solution wide, opening a file with a reference if necessary.
It also has cross-language support, e.g. if your solution contains projects written in different languages (e.g. C#, C++,
VB) and you Tab over a System.Object type reference you might visit all of those projects.

For those who prefer to align code using the white space, the Tab to Next Reference is not available at the very
beginning of an identifier or a type references by default, e.g.:

359

1

2

3

4

5

void GetCount(ref int result)

{

 [caret]int count = 100;

 [caret]result += count;

}
“[caret]” is indicating the editor caret position.

In both places the feature will insert the regular tab whitespace character, because this character is often used for
source code aligning. If you would like to change this behavior, there is an alternative Tab shortcut binding (disabled
by default) that allows the Tab key to take you to the next reference when the caret at the beginning of an identifier or
a type reference.

To enable this shortcut, go to the IDE | Shortcuts options page in the CodeRush Options Dialog, find an alternative
shortcut binding (Navigation | References | Nav Fields) and check the Enabled check box:

Once it is enabled, to insert whitespace at the beginning of a line of code, you will need to use the Space bar instead
of the Tab key, or move the editor caret to the left, so there’s at least one whitespace character to the right of the editor
caret.

Color Options

360

To tweak the color of the underline highlighting, you can go to the Editor | Painting | Navigation Fields options page
in the Options Dialog:

Behavior Options

The options specific to the Tab to Next Reference feature are located on the Editor | Navigation | Tab to Next Refer-
ence options page:

361

Available options are:

•	 Suppress availability when the caret is at the start of field declarations

If checked, Tab to Next Reference won’t be available at the start of a name of a field declaration, and hitting the
Tab key will insert a regular whitespace character. Here’s a sample code with a caret position which is implied in the
option:

1

2

3

4

class Test

{

 int [caret]MyField;

}
This option is useful if you prefer to align your code in the following way:

1
2
3
4
5
6
7

class Test
{

 int Height;
 int Width;
 double Weight;
 string Name;
}

362

Visualize references search

Shows a small hint with a progress bar while the references search is in progress. In most cases, you won’t notice a
hint, because references search is ultra-fast and takes only milliseconds.

•	 Navigate into designer code

If checked, Tab to Next Reference will skip references in designer-generated code inside “*.Designer.*” files.

Notes

The Tab to Next Reference feature relies upon the DXCore‘s background parse, and may not be available for a
few seconds after a solution is opened. In this case, if you press Tab on an identifier before the background parse is
complete, you will get a regular tab whitespace character inserted at the editor caret position instead of the expected
feature behavior. You can encounter such behavior only in rare cases for very large projects with thousands of files.
When the background parsing is in progress, you can see the “Processing solution items…” hint:

If you don’t see this hint, it is safe to use any CodeRush features as well as the Tab to Next Reference.

Highlighting an identifier and its references

CodeRush has the Highlighting All References feature, based on the Tab to Next Reference feature, with the
difference that you do not actually navigate between references. The feature simply highlights the current identifier
and all its references. The default shortcut to apply the reference highlighting is Ctrl+Alt+U. Once performed on an
identifier, you will see the identifier and its references highlighted in pink:

If you move the caret outside of the highlight – it will automatically disappear. Or, you can press the Enter key to
accept the link, so it will go away. Don’t forget that you can perform the Tab to Next Reference feature if you would
like to navigate between highlighted references.

Visual Studio 2010 has a similar highlighting of a word under the caret, however, a gray background is not as visually
appealing as the highlight of this CodeRush feature. The color of the highlighting can be changed on the Editor |
Painting | Navigation Fields options page in the Options Dialog:

363

As always, you can change or add a new shortcut to apply the feature on the Shortcuts options page, using the High-
lightReferences action name.

Click Identifier

Click Identifier allows you to navigate to the declaration of the identifier under the mouse cursor by a single mouse
left click when the CTRL key is held down. If the declaration is located inside your source code, the source file will
be opened and the text caret will move to that declaration. Otherwise, the metadata for the target declaration will be
shown (e.g. for “System.Double”).

364

Click Identifier feature can show a preview hint of the declaration when you hover over an identifier with the mouse
pointer (while holding down the CTRL key) and drop a marker at the source location before navigating to it.

By default, this feature is disabled. To enable it, follow these steps to get to the Click Identifier options page:

1. From the DevExpress menu, select “Options…” to open the Options Dialog.

2. In the tree view on the left, navigate to this folder: “Editor\Navigation”

3. Select the “Click Identifier” options page.

4. Check the “Enabled” checkbox.

There are also a few additional options available:

•	 Color of the line, which underlines the identifier under the mouse pointer

•	 Drop a marker at the source location before navigation is made

•	 Show target declaration preview hint.

Drop Marker Before Jump

The “Drop Marker Before Jump” feature is intended to help you easily navigate back at the source location after
the “Go to Definition” Visual Studio command is performed. It drops a marker at the text caret location, before you
jump to the definition. After you finish navigation to the definitions, pressing theEsc key will move you back to each

365

location you have visited.

The “CR_DropMarkerBeforeJump” plug-in containing this feature is installed, by default. However, the feature is
disabled. You’re able to configure it on the “Editor\Navigation\Drop Marker Before Jump” options page in the Op-
tions Dialog.

The References tool window also known as Find All References

The References tool window is designed to search, navigate and review the identifier references in the entire solution.
This is what it looks like:

You can bring it up via the DevExpress | Tool Windows | References menu item or by pressing the Shift + F12 short-
cut.

The main window contains a toolbar, the references list, and the code preview area. The layout of the window is con-
figurable using the corresponding tool buttons (Landscape, Portrait, or References Only layouts).

Visual Studio also has a similar built-in feature called Find All Reference (FAR). What’s the difference between the
CodeRush References tool window and Visual Studio FAR feature?

First, the user interface. Let’s compare what we will see in the Visual Studio FAR window while looking for the refer-
ences of the same identifier as in the CodeRush References screenshot above:

Next, one of the most important differences is the speed of reference searching. Here are a couple of measures made

366

inside Visual Studio 2010 on one of the main CodeRush core solutions:

References for: Visual Studio FAR CodeRush References
‘Int’ type

(20,528 references)

47,305 sec 24,224 sec

‘String’ type

(31,805 references)

76,258 sec 54,740 sec

‘TextDocument’ object

(609 references)

7,802 sec 2,206 sec

The machine configuration is the following: Intel Core i5 CPU M560 @2.67Ghz, 8.0 Gb, Windows 7 x64.

It seems that the CodeRush References feature might be around 2 to 3 times faster than Visual Studio’s FAR on a
medium solution (35 Mbytes of code).

Next, the results organization. In the CodeRush References window, you can do the following:

•	 group results by projects

•	 group results by source files

•	 group results by a namespace

•	 group results by a class

•	 group results by a member

•	 sort references alphabetically

•	 sort by reference count

•	 increase/decrease the font size

•	 see the reference including its parent member’s code preview

In Visual Studio you can:

•	 see the full file path and member signature of the reference found.

In addition, the CodeRush references window can search for references in two modes:

•	 Live Sync (automatic mode)

•	 On Command (manual mode).

If you are in the Live Sync mode, stepping on a reference will automatically look for other references automatically.
In the On Command mode, you have to click the Refresh button (or press Shift+F12 again) to search for references.
In the Visual Studio FAR feature, there is only a manual mode.

367

The search mode is toggled on the References window toolbar. Other tool buttons are:

Icon Caption Description

 Sort by reference count Sorts the found references by the count in descending
order.

 Sort alphabetically Sorts the found references alphabetically in ascending
order.

 Show parenting project nodes Allows you to see and group references by the contain-
ing project name.

 Show parenting file nodes Allows you to see and group references by the contain-
ing file name.

 Show parenting namespace nodes Allows you to see and group references by the contain-
ing namespace name.

 Show parenting class nodes Allows you to see and group references by the contain-
ing class name.

 Show parenting member nodes Allows you to see and group references by the contain-
ing member name.

 Increase font size Makes the references list font bigger.

 Decrease font size Makes the references list font smaller.

 Landscape layout (code preview on right) Arranges the references list on the left and the code
preview area on the right of the window.

 Portrait layout (code preview below) Arranges the references list at the top and the code
preview area at the bottom of the window.

 References Only (no code preview) Hides the code preview area.

 Visualize references search Shows a progress indicator while searching for refer-
ences.

In the reference list, you can double-click the reference to navigate to it inside the code editor. The blue arrow marker
shows the currently selected reference. While navigating between references, a temporal white marker is dropped, so
you can simply press Esc to navigate back to the previous locations.

If you right-click the references list, you can access a context menu with the following menu items:

Menu item Description
Collapse All Collapses all items in the references list.
Collapse Children Collapses children items of the selected item in the references list.
Expand All Expands all items in the references list.
Reference Highlight Color… Allows you to open the option page for configuring the code preview high-

light color (Editor | Painting | Code Previews) in the Options Dialog.
Layout -> Allows you to choose between window layouts (Landscape, Portrait, No

Code Preview).
At the bottom of the window there is summary information about the count of references found and how much time it
took to find them all.

368

Quick Navigation

The Quick Navigation feature allows you to find any code members inside your solution, such as classes, interfaces,
structures, enumerations, delegates, methods, properties, events, fields locals and parameters. Once you hit the
Ctrl+Shift+Q shorcut, the simplified Quick Navigation window will appear by default:

The window is not modal and is not dockable, so that you can quickly hide it when you have navigated to the desired
member or the window focus is lost.

The Quick Nav window has a Filter checkbox that indicates that the content of the members list is filtered by the
member name entered in the text box right after the filter:

Near the filter text value there are two options:

•	 Show additional filter options;

•	 Preview target location (by holding down the Ctrl key).

The main area of the window is the members list. The initial members list consists of all members if it is not filtered
by the name or member type. The filter by the name text box has advanced filtering capabilities, such camel-case
filtering. If you type an uppercase letter, the corresponding member names will be shown, e.g.:

369

The uppercase letter entered in the text filter box are highlighted in red, and the other uppercase letters are highlighted
in blue, so you can continue typing suggested letter candidates.

The advanced filtering options are accessible by pressing the ‘Show advanced filtering options’ button. There are four
advanced filters:

By members:

Icon Filter Shortcut

 Methods Alt+M

 Properties Alt+P

 Events Alt+V

 Fields Alt+F

 Locals and parameters Alt+R

370

By types:

Icon Filter Shortcut

 Classes Alt+C

 Interfaces Alt+I

 Structures Alt+S

 Enumerations Alt+E

 Delegates Alt+D

By access (visibility):

Icon Filter Shortcut

 Private Alt+A

 Protected Alt+O

 Internal Alt+N

 Protected Internal Alt+T

 Public Alt+B

By scope:

Icon Filter Shortcut

 All files (incl.
(miscellaneous

Alt+Shift+A

 Current Solution Alt+Shift+S

 Current Project Alt+Shift+P

 Current Namespace Alt+Shift+N

 Current File Alt+Shift+F

If you right-click the filters, you can change the state of the filters group by choosing the corresponding menu item:

371

Once all filters are tweaked as required, the members list will contain corresponding members. If there are members
with equal names, you can show a full file name by right-clicking the members list and choosing the “Show qualifi-
ers…” menu item:

Enabling this option will display the full file paths to each member:

Hovering over a member name in the list will also show you an additional hint that displays the location of the mem-
ber (e.g., class, namespace, file):

372

The second option on top near the name filter allows you to preview the chosen member by holding down the Ctrl
key as follows:
The Quick Nav window and member preview are customizable. See the corresponding topic to learn more on how to
customize the window and member preview, and create dedicated keyboard shortcuts with the predefined advanced
filters.

Advanced CodeRush Quick Navigation customization

The Quick Navigation window is customizable on the Editor | Navigation | Quick Nav option page in the
CodeRush Options Dialog accessible via the DevExpress menu:

Here are available options:

[X] Preview target locations when Control key is held down

This option specifies the default value for the member preview availability when holding down the Ctrl key on the
active member inside the Quick Nav member list.

The ‘Highlight color’ color option is self-described.

[X] Draw selection bars

This option specifies the type of lines drawn at the top left and bottom-right corners of the preview whether they are
thin or thick.

[X] Outline preview

373

This option specifies whether or not the border of the member preview should be highlighted.

[X] Draw qualifiers for elements

This option specifies wether or not to show a member full file path.

[X] Layer previewed code with a semi-transparent fill

This option specifies whether or not to fill a background of the member preview.

The preview area allows you to see the resulting member preview when changing the corresponding preview options.

[X] Drop markers when jumping to new locations (for quick return with Escape)

This option specifies whether or not to leave markers to be able to quickly get back to the starting position in code.

[X] Show recently used elements

The ‘Positioning’ options specify the starting location of the Quick Navigation window in relation to the member
preview.

In addition to these options, you can create custom keyboard shortcuts to open Quick Navigation with the predefined
advanced filters. This is configurable on the IDE | Shortcuts option page in the CodeRush Options Dialog.

You can create new shortcuts for the QuickNav command and specify a combination of the following parameters:

Type filter – specifies the ‘ by types’ filter with the following values: Classes, Interfaces, Structs, Enums, Delegates,
AllTypes.

Member filter – specifies the ‘by members’ filter with the following values: Methods, Properties, Events, Fields,
LocalsAndParams, AllMembers.

Access filter – specifies the ‘by access (visibility)’ filter with the following values: Private, Protected, Internal,
ProtectedInternal, Public, AllVisibilities.

Scope filter – specifies the ‘by scope’ filter with the following values: AllFiles, CurrentSolution, CurrentProject,
CurrentNamespace, CurrentFile.

You can combine each of the filters with the ‘and’ keyword. The advanced filter options are specified without quotes
in the parameters of the shortcut and should be specified consequently, separated with a comma, for example:

Find everything everywhere: “AllTypes, AllMembers, AllVisibilities, AllFiles”.

Find global methods, properties and events in a solution: “, Methods and Properties and Events, Public and Internal,
CurrentSolution”. Note that the type filter is skipped by specifying just a comma.

Find private fields in a project: “, Fields, Private, CurrentProject”. Note that in this case the type filter is skipped as
well.

The Quick Nav feature will save the parameters, so you may call the window with the default shortcut with the same
filter options as the previously opened window.

Navigation providers overview

CodeRush Navigation Providers Engine is an extensible architecture that allows you to easily navigate inside your

374

code structure and particular code fragments.

There are dozens of nav providers shipped with CodeRush. To see available navigation providers in the current con-
text, press the Ctrl+Alt+N shortcut inside the code editor, and the “Jump to” popup menu appears:

or

After an item from the list is executed, in most cases, you will immediately navigate to the target position. But if there
are several targets for navigation, the additional popup menu with the list of these targets will be shown:

375

A marker is dropped at the source location, when you navigate to the specific target. You can press the Esc key to
return to the initial position.

You can also bind your favorite navigation providers to a specific shortcut key using the Navigate command.

CodeRush Navigation providers list

Here is the list of navigation providers shipped with the latest CodeRush Pro version. Press the Ctrl+Alt+N shortcut
inside the code editor, to see all available navigation providers in the current context. You can use the provider name
to bind it to a particular shortcut key using the Navigate command.

Name Description
Abstract Member
Ancestor

Navigates to the abstract member ancestor of the current member implementation.

Ancestor Navigates to the ancestor type declaration.
Base Types Navigates to base types of the current class (doesn’t list base type of ancestors).
Base Types within
Ancestors

Navigates to base types of the current class including base types of ancestors.

Declaration Navigates to the declaration of the current identifier.
Descendants Navigates to descendant type declarations.
Enum Element Navigates to enum elements of the current enumeration declaration.
First Child Navigates to the first child of the current language element.
First Enum Element Navigates to the first enum element of the current enumeration declaration.
First Member Navigates to the first member in the current type declaration.
First Statement Navigates to the first statement in the current scope.
Flow Breaks Navigates to flow breaks in the current scope.
Implementations Navigates to method implementations for the current method reference.
Implementers Navigates to implementers of the current interface declaration.
Last Enum Element Navigates to the last enum element of the current enumeration declaration.
Last Member Navigates to the last member in the current type declaration.
Last Statement Navigates to the last statement in the current scope.

376

Members
Navigates to members of the current type declaration. Nested type declarations are
ignored.

MVC View Navigates to the corresponding MVC view.
MVC Controller Navigates to the corresponding MVC controller.
MVC Action Navigates to the corresponding MVC action.
Next Enum Element Navigates to the next enum element of the current enumeration declaration.
Next Member Navigates to the next member in the current type declaration.
Next Reference Navigates to the next references of the current identifier.
Next Statement Navigates to the next statement in the current scope.
Overloads Navigates to overloaded members of the current member in the current type.
Overloads within
Ancestors

Navigates to overloaded members of the current member in the current and ancestor
types.

Overrides Navigates to overridden members of the current member.
Parent Navigates to the parent language element.
Parent Member Navigates to the parent member.
Parent Type Navigates to the parent type declaration.
Previous Enum Element Navigates to the previous enum element of the current enumeration declaration.
Previous Member Navigates to the previous member in the current type declaration.
Previous Reference Navigates to the previous references of the current identifier.
Previous Statement Navigates to the previous statement in the current scope.
Statements Navigates to the statements of the current scope.
Virtual Member Ancestor Navigates to the virtual member ancestor of the current member implementation.

Quick File Navigation

Quick File Nav navigation CodeRush feature allows you to switch between all files in a solution. The shortcut key
for this tool window is the Ctrl+Alt+F. Once you press the shortcut, the following window appears at the editor caret
position or at the center of the Visual Studio main window:

377

The window consists of two parts – the filter box, which can be hidden, and the files list sorted alphabetically. If you
hover over a file name – its full path will be shown.

There are only two options you can tweak:

•	 toggle the visibility of the filter box (enabled, by default)

•	 toggle the visibility of a project name caption near a file name (disabled, by default)

These options are available via the right-click context menu:

With both options turned on, the window will look like this:

The filtering works the same way as in all other file-navigation windows, such as Browse Recent Files and Open
Files. In the filter box, you have to type the file mask, for example “*.resx” (without quotes). Camel-case filtering is
also available, so typing “AI” will find the “AssemblyInfo.cs” file, where “AI” will identify two words: “Assembly”
and “Info”.

Bear in mind, that this tool window is not modal, and it will be hidden once it loses focus. The Esc key will hide the
window as well. Up and Down arrow keys are suitable for navigating between files in the list.

378

Open Files tool window

The Open Files CodeRush tool window lists files that are currently opened inside the Visual Studio IDE. The window
allows you to quickly switch between files via a single mouse click. This window is similar to the Ctrl+Tab Visual
Studio built-in window but has a few advanced options. This is what it looks like:

To open the window, click the DevExpress | Tool Windows | Open files menu item:

As always, you can create you own shortcut to toggle the visibility of this tool window. The name of the action is
“OpenFilesWindowToggle”.

The window contains of three parts:

•	 The Filter toolbar with a couple of tool buttons

•	 The Files list

•	 The Status bar

379

The main part of the window contains the list of opened files. The list is being populated automatically once a file is
opened inside the IDE. The currently active file is highlighted in a light blue color with a dark blue triangle on the
left. If a file is modified, a red asterisk is shown over the file name. You can also see the ‘lock’ icon if the file has the
read-only attribute set or locked by the source version control. Clicking the file name or pressing Enter will activate
the file inside the IDE.

The list has a right-click context menu with additional options:

Note that the visibility of some options depends on the node you have selected in the list – a file node, a group of
nodes (parent node with children) or no node.

Save “FileName” Saves the highlighted file if one is modified. If the highlighted file is not modified,
the option is disabled.

Save Group Saves the selected group of files.
Save All Saves all modified files.
Close “FileName” Closes the highlighted file.
Close Group Closes the selected group of files.
Close All Saved Files Closes all files that are not modified.
Close All Files Closes all files no matter whether modified or not.
Show Toolbar Toggles the visibility of the Filter toolbar and its buttons.
Show Status Toggles the visibility of the status bar.
Arrange Files By Allows you to arrange files in the list by project, path or show a plain list of file

names.
Options Opens the options page inside the Options Dialog with advanced settings for the

tool window.
Refresh Refreshes the list of files. Click it if there are missing files in the list by some

reason.

If you have arranged files by the project or the full path, you will see the appropriate parent nodes in the files list, for
example:

380

You can collapse and expand parent nodes by double clicking them. If a node is collapsed, you will see the [+] sign at
the end of the node’s caption.

If you click the header of the list you can toggle its sorting: ascending or descending.

The status bar shows the number of opened files and the number of modified files. There are also two navigation
buttons to switch between files in the list. The first button activates the previous file in the list, and the second one
activates the next file in the list. There are also two additional actions corresponding to these buttons:

•	 OpenFilesSelectNext – activates the next file from the list;

•	 OpenFilesSelectPrevious – activates the previous file from the list.

The Filter tool box allows you to enter the file name specific filter. For example, typing “*.resx” in the text box will
show only the files with the “resx” extension. You can type upper case letters in the filter box and this will find file
names having those letters in the name, e.g. typing “AI” will find “AssemblyInfo” files.

To the right of the Filter text box there are customizable tool buttons. By default, there are two buttons:

•	 Show Start Page – opens the Visual Studio Start Page that allows you to create, open or choose a
recent project for opening.

•	 Last Help Page – opens theVisual Studio integrated help system with the last visited page.

On the Open Files options page you can enable two more buttons:

•	 Web browser – opens Visual Studio integrated web browser

•	 Object browser – open Visual Studio Object browser tool window

Options of the tool window inside the Options Dialog are similar to options that you can tweak using the right-click
context menu of the files list. Here is what the options page for the window looks like:

381

The Show and Arrange File By options are the same as inside the context menu. The Visible Toolbar Buttons allows
you to turn on or off buttons on the Filter toolbar. The Hot Bar option automatically refreshes the list of files within
the specified amount of time.

Browsing recently accessed files

CodeRush has a special tool window for browsing recently opened (accessed) files inside Visual Studio
called Browse Recent Files. It is available via the corresponding File -> Browse Recent Files… menu item, or via
the Ctrl+Shift+. (dot at the end) shortcut. This is what it looks like:

382

The majority of the window contains the list of files. By default, it stores the list of 500 files, which is configurable.
To activate the file, double click it, or press the Enter key. If you select several files – you can open all of them at
once with the Enter key. If you use the mouse, you can see the full path to the file when hovering over it. This allows
you to choose the correct file, if there are different files with the same name:

The list of files contains two columns:

•	 File Name – shows a short name of a file.

•	 Last Access – shows the full date and time of the last access to a file.

You can sort any of these columns ascending or descending.

The list has a context menu available via right-clicking anywhere on the list:

383

with the following items:

•	 Show Filter

Toggles the visibility of the filter text box at the top of the tool window.

•	 Show Date Filter

Toggles the visibility of the additional Date filter.

•	 Show Options

Opens the corresponding options page in the Options Dialog with additional settings for the tool window.

•	 Remove Selected Entry from List

Removes the selected entry or a number of selected entries from the list.

•	 Activate Files

Activates the selected file or a number of selected files at once.

•	 Copy file full path(s)

Copies the fill path to the file into Clipboard.

At the top of the window, there’s a filter text box, where you can type a filter for a file name. The filter contains two
parts – the name or mask of a file and its extension. You can use the ‘*’ wildcard, which is also used as a default file
extension. For example, typing “A*.cs” (without quotes) will find all files with the “.cs” extension and the file name
starting with the ‘A’ letter.

The filter text box also supports camel-case filtering. This kind of filtering works the following way: the upper-case
letters specify the starting letters of words in a file name. For example, typing “AI” will find the “AssemblyInfo.
cs”, where “AI” identifies two words: “Assembly” and “Info”. The starting letters will be highlighted in red and the
remainder, not specified in camel-case filter search, will be highlighted in blue:

384

In addition to file names filter, there’s the Date filter available, once you enable it via the context menu:

This filter allows you to specify the modification date of files to be shown. There two ways of date filtering:

•	 Modified in the last X days (or month, or years) – enter the number (X) of days (or month or
years) when the file was last modified.

•	 Modified between – enter the date range when the file was modified

Advanced settings for the Recent Files tool window are available on the corresponding options page. You can open it
via the context menu choosing the “Show Options” menu item:

385

Available options are:

•	 Maximum number of files to track (500-10,000)

•	 Default file extension for filter

•	 Include missing files in the list

This option specifies whether or not show the non-existing files in the list

•	 Include network files in the list (This may take time if network path is not available)

This option specifies whether or not to show the files located on the network

That covers “Browse Recent Files“. The similar features for navigation between files are:

•	 Quick File Nav

•	 Open Files

Working with HTML tables

Generating any-size HTML tables and navigating between table cells is very easy when you have DevExpress
CodeRush installed. To create a new table just type “.t” inside the HTML markup and press the Space bar. This code
snippet template will execute the Table Size UI feature of CodeRush, and the following tiny window will appear:

386

This small window enables you to choose the size of the generated table. Set the columns and rows count by using
the arrow keys:

Once the size is set, press the Enter key to generate the table with the specified size, for example, this the 2×2 table
created:

The Esc key cancels a specific-sized table creation and inserts a default table expansion:

Another part of the Table Size UI feature is the ability to navigate between table cells using the Tab and Shift+Tab
keys. Pressing Tab will move the editor caret to the next cell of the current table and show the ‘map’ of the table – the
overall size of the table and the current cell that is highlighted in red:

387

If the cell you are navigating into has some content, it will be completely selected just in case you are going to re-
place it with new content:

Don’t forget the expansion of the Table Size UI feature – “.t“.

Step Into Member

The Step Into Member navigation feature is used in Debug mode only. It allows you to skip unnecessary members
while debugging and drill down into the member you choose.

Consider that you are debugging some source code and the current statement has numerous method calls and property
references:

388

IncreaseSalary(FindPersonById(GetPersonId(LastName, FirstName, Age)), Salary)

Here we have three method calls and four property references. The IDE debugger will step into each one. The Step
Into Member feature allows you to step into the definite member under the editor caret position, skipping all
others. So, instead of stepping through every member call, you can choose the member you would like to step into
– just move the text caret on the member name you want to drill into, and click the Step Into Member button on
the DXCore Visualize Toolbar, or press the Ctrl+Shift+F11 keyboard shortcut.

For example, if you want to step into the IncreaseSalary method, skipping the LastName, FirstName, Age and Sal-
ary property getters, and without stepping into FindPersonById, GetPersonId methods – move the editor caret at
the IncreaseSalary method and use Step Into Member. After that the program execution will jump to the first state-
ment inside the IncreaseSalary method you specified.

This is what the Step Into Member icon looks like on the DXCore Visualize Toolbar:

Navigating in the abstract source code tree

When CodeRush/DXCore has parsed the source code, an abstract source code tree is built. You can see the structure
of the code tree using the Expression Lab diagnostic tool window. When you understand the source tree, you can use
several small tools to quickly navigate inside children and siblings of the tree.

Here are available actions that allow you to quickly jump to different logical blocks inside the source tree. All actions
move the editor caret to the desired tree node:

Action Short description Shortcut
NavPreviousSibling Move to previous sibling Ctrl + Up Arrow
NavNextSibling Move to next sibling Ctrl + Down Arrow
NavParent Move to parent Ctrl + Alt + Up Arrow
NavFirstChild Move to first child Ctrl + Alt + Down Arrow
NavLastChild Move to last child {Underfined}

Note that some of the shortcuts are disabled by default (e.g., NavPreviousSibling and NavNextSibling).

Having these tools in your arsenal may boost your navigation performance inside the code editor a lot. For instance,
you can press Ctrl+Up and Ctrl+Down to jump between previous and next members of a class.

Navigation between expressions of the parsed source tree

After DXCore has parsed the source code and built an abstract source tree for the active source file, you can navigate
between its nodes and detail nodes by using the special navigation feature shipped with CodeRush. The feature is
called the Expression Focus. It allows you to navigate between the smallest parts of the source tree – expressions.

Expressions are strings, numbers, identifier references, binary operations, method calls and others. You can take an
overview of expressions for the current source tree, using the Expression Lab DXCore plug-in. The feature may be
useful for plug-in developers as well as users, reviewing the code and editing some its parts, such as an XML Doc
comments.

You can move in both directions between expressions: forward and backward. There are corresponding shortcuts to
move in these directions:

389

•	 Ctrl+Alt+Tab and Tab to move to the next expression

•	 Ctrl+Shift+Alt+Tab and Shift+Tab to move to the previous expression

The feature was widely available via the simple shortcuts like Tab (to move forward) and Shift+Tab (to move back-
ward). However, when the Tab to Next Reference feature appeared, which is bound to the same shortcuts (Tab and
Shift+Tab), then the Expression Focus become less important, and the availability of its shortcuts has been reduced
by changing its context. Currently, the feature is mostly available inside XML Doc comments. So, it allows you to
easily edit XML API documentation like this (the special Key Watcher tool window plug-in shows my key presses):

To change the default key bindings, go to the Shortcuts options page and tweak them inside the Navigation | Struc-
ture folder:

390

Or you can create your own shortcuts and assign them to the ExpressionFocusNext and ExpressionFocusPrev actions.

391

392

Chapter 9. Unit testing service

Overview

The Unit Testing Technology shipped in CodeRush Pro allows you to manage, navigate, run, and debug unit test
cases of different unit testing frameworks. The technology consists of several parts:

•	 Different unit testing frameworks support

•	 Code editor UI and test runner tool window

•	 Shortcuts and code templates for creating, running and debugging tests

•	 Programmatic extensibility and support for managing testing frameworks

Frameworks

Full native support for all popular unit testing frameworks is included out of the box. The supported testing frame -
works are:

•	 VSTest – a Visual Studio integrated unit testing framework

•	 NUnit – a unit-testing framework for all .Net languages

•	 MBUnit – a generative unit test framework

•	 xUnit – a unit testing tool for the .NET Framework

•	 MSpec – a Context/Specification framework geared towards removing language noise and simplii-
fying tests

•	 MS Silverlight – a simple, extensible unit testing framework for Silverlight developers

UI

If the solution contains test cases and the appropriate testing framework assemblies are referenced, the Unit Testing
Service recognizes them and marks with a test icon inside the code editor that allows you to choose test actions by
clicking one. The other way to run tests is to right-click an item inside the Solution Explorer. This will run all test
cases inside the scope depending on the item clicked: inside a source file, inside a project, or inside an entire solution.
The Visual Studio Output window will have information about operations with test cases. The Unit Test Runner tool
window collects all test cases of an entire solution into a single window.

Shortcuts

Several keyboard shortcuts dedicated for unit testing, enable you to manage test cases with a single keystroke inside
the code editor. This will run or debug test cases inside the scope depending on the current context, or repeat the last
performed tests.

CodeRush code templates for different testing frameworks allow you to generate test fixtures, test methods,
assertions, testing attributes with a few keystrokes. See the NUnit testing code templates, for example.

Extensibility

Programmatic extensibility allows you to add support for additional testing frameworks that do not exist in the cur-
rent implementation. Also you can programmatically manipulate any test cases from the DXCore plug-in.

393

Resources

Here’s a link to the video made by one of the CodeRush inspired users (TheThoughtfulCoder.com) about the Unit
Test Runner.

Unit testing inside the code editor and the Solution Explorer

Let’s compare the benefit of the CodeRush Unit Testing Service against the native Visual Studio unit testing supi-
port as an example. The first things that may catch your attention are test icons near test methods, test fixtures and
namespaces containing test cases:

You can see different test icons depending on the status of a test:

 Test(s) has not run yet

 Test(s) has run and passed

 Test(s) has run and passed, however there have been changes to the code since the last run

 Test(s) has run and failed

 Test(s) has run and failed, however there have been changes to the code since the last run

 Test(s) has been ignored

By clicking on this icon, a context menu appears giving you several options:

394

This lets you run or debug a single test in all supported frameworks, including Silverlight. Note that Visual Studio’s
built-in test runner can’t do this.

Test fixtures and namespaces containing unit tests have icons summarizing the run results of their contents. For ex-
ample, if at least one test has failed, the namespace and the test fixture will both have a red “X” icon, indicating they
contain failed test cases.

If you hover the mouse over one of the test icons, you can see the status of the test in a summary hint:

The failed state of a test will show additional testing results such as message, expected results and a call stack:

Instead of seeing results in the Visual Studio’s Test Results window, you see them straight in the code. Such visualiza-
tion provides a better overview of a test state, and you can apply changes to a test immediately if required.

Tests can also be run or debug test cases from the code editor context menu:

395

And from the Solution Explorer:

396

The Visual Studio Output window will have all details about test runs performed:

The summary of all test cases inside entire solution can be seen in the special Unit Test Runner window:

Don’t forget that you can use keyboard shortcuts without interacting with the code editor.

Machine.Specifications (mspec) testing framework support

The CodeRush Unit Test Service supports the running and debugging of testing scenarios of the Mashine.Specificat-
tions (mspec) framework.
To run or debug mspec tests, do the following steps:

•	 install the latest version of the MSpec framework;

•	 specify the path to the framework inside Test Runner options page, if it wasn’t detected
automatically;

•	 add necessary framework assemblies to the project, such as Machine.Specifications.dll.

That’s it.

The path to the installed framework should be detected automatically. If by some reason it wasn’t, please go to
the Options Dialog and manually specify it:

397

As you may know, the most common keywords of the framework are Subject, Establish, Because and It: de-
clare the Subject of your spec, Establish a context of the spec, Because something occurs (the action being
tested), It should do something – an assertion, which is usually the extension methods/fluent interfaces based
on NUnit/xUnit Assert classes.

There are additional keywords and attributes such as Behaviours and Behaves_like for more complex scenarios. If
you need to perform some cleanup, use the Cleanup keyword, which provides teardown for the specification.

Here’s the classical example shipped with MSpec, you can see test icons inside the code editor near each assertion:

398

(click the image to enlarge)

Clicking an test icon allows you to run or debug tests:

You can also see all tests inside the main Unit Test Runner window:

399

Managing tests with the Unit Test Runner tool window

The Unit Test Runner tool window is designed to review, navigate, execute, and manage unit test cases of the entire
solution. Here is what it looks like:

The window contains the following parts:

•	 A toolbar to execute test operations and change window properties;

•	 A filter box to find required test cases;

•	 A solution tests tree;

•	 Details of tests run;

400

•	 A status bar with a quick status info.

Toolbar

The toolbar has the following options:

Icon Button Description

 Run Runs a single test or several tests from the selected node in the
tests tree.

 Run all Runs all test cases in the current solution.

 Debug Debugs a single test or several tests from the selected node in the
tests tree.

 Repeat last test(s) Runs test cases that were previously executed or debugged.

 Stop Stops the current test run process, if any.

 Refresh tests tree Performs a tests search operation to find new tests or remove the
deleted ones.

 Hide test run details Hides the details tabs of the test runs.

 Show test run details on right Sets the landscape layout for the tests tree and details of a test run.

 Show test run details below Sets the portrait layout for the tests tree and details of a test run.

 Show failed only Filters the tests tree to show only failed tests.

 Show ignored only Filters the tests tree to show only ignored tests.

 Grouping Groups the tests tree by Project, Category, Namespace, or without
grouping (flat view).

Filter and Tests Tree

The filter text box allows you to find the tests by name.

The tests tree contains two columns:

•	 Tests. Shows test cases with a parent project, namespace and class nodes.

•	 Duration. Shows the duration of each run test run.

The tree has a right-click context menu with the following options:

401

•	 Go to class (test): navigates to the corresponding item selected in the tests tree.

•	 Expand All: expands all nodes of the tests tree.

•	 Collapse All: collapses all nodes of the tests tree.

Test Run Details and Status Bar

The details tab of the test run displays a syntax-highlighted call stacks which makes it easier to see what led to a
failure:

You can click the file name to open and navigate to the file with a failed test. All colors in this tab are customizable on
the Test Runner Window option page in the Options Dialog. Additional options for this tab are available in the right-
click context menu:

402

Available options are:

Icon Menu item Description
 - Copy Copies the information from the Details tab into

Clipboard.

 Line View Switches the call stack view to the line view.

 Tree View Switches the call stack view to the tree view.

 Hide call stack items without file references Toggles the visibility of call stack rows depending on
the file names presence to filter the call stack and make
it easier to read.

 Show passed items Toggles the visibility of the passed tests.

 Show ignored items Toggles the visibility of the ignored tests.

 Show failed items Toggles the visibility of the failed tests.

 - Zoom -> Allows you to select the zoom level of the details
information.

The Console output and Console Errors tabs shows the standard output and errors of the Console correspondingly, if
any.

The status bar shows a summary of total tests, passed, failed, ignored tests.

Don’t forget that you can execute the unit test operations directly from the code editor or via the dedicated unit testt-
ing shortcuts.

Shortcuts and actions

CodeRush Unit Test Runner has a set of predefined shortcuts useful for running and debugging unit test cases inside
Visual Studio. All shortcuts are easy to remember: they start from a general Ctrl+T keystroke (where T means Test-
ing) followed by a second key which specifies the operation, for example:

403

•	 D – Debug

•	 F – File run test cases

•	 P – Project run test cases

•	 S – Solution run test cases

•	 and so on…

Here’s the table of Unit Test Runner shortcuts and their corresponding actions. Note that some actions don’t have
default shortcuts set.

Shortcut Action Description
Ctrl+T, D UnitTestsDebugAtCursor Starts the debugging of a test case(s) at the editor caret (cursor)

location. The scope is determined from the position of the editor
caret; for example, inside a method, a fixture, or a namespace
it will start debugging appropriate test cases inside of the men-
tioned scope.

Ctrl+T, F UnitTestsRunFile Runs test cases located in the current source file.
Ctrl+T, P UnitTestsRunProject Runs test cases located in the current project (selected inside

Solution Explorer).
UnitTestsRunCategory Runs test cases located in the specified category (passed as a

parameter, separated by a semicolon).
Ctrl+T, R UnitTestsRunAtCursor Runs test cases at the editor caret (cursor) location. The scope

is determined from the position of the editor caret; for example,
inside a method, a fixture, or a namespace it will start debugging
appropriate test cases inside of the mentioned scope.

Ctrl+T, S UnitTestsRunSolution Runs test cases located in the current solution.
Ctrl+T, T UnitTestsShowRunner Shows the main Unit Test Runner tool window.

RepeatLastTests Runs test cases that were previously executed or debugged.

TestRun Runs all test cases at the editor caret (cursor) location. The
scope is determined from the position of the editor caret, for
example, inside a method, a fixture, or a namespace will start
debugging appropriate test cases inside of the mentioned scope.

TestDebug Starts the debugging of a test case(s) at the editor caret (cursor)
location. The scope is determined from the position of the editor
caret; for example, inside a method, a fixture, or a namespace
it will start debugging appropriate test cases inside of the men-
tioned scope.

RunFolderTests Runs test cases located in the current folder inside Solution
Explorer.

UnitTestsRunCurrentClass Runs test cases located in the current source type declaration.

UnitTestsDebugCurrentClass Starts debugging test cases located in the current source type
declaration.

UnitTestsDebugCategory Starts debugging test cases located in the specified category
(passed as a parameter, separated by a semicolon).

UnitTestsRunFailed Runs test cases that were failing in the previous run.

404

UnitTestsDebugFailed Starts debugging test cases that were failing in the previous run.

UnitTestsDebugSolution Starts debugging test cases located in the current solution.

There is also a second set of shortcuts called “Visual Studio Style” that is disabled by default. These shortcuts start
with the general Ctrl+R keystroke:

Shortcut Action Description
Ctrl+R, A UnitTestsRunSolution Runs test cases located in the current solution.
Ctrl+R, C UnitTestsRunCurrentClass Runs test cases located in the current source type declara-

tion.
Ctrl+R, Ctrl+A UnitTestsDebugSolution Starts debugging test cases located in the current solution.
Ctrl+R, Ctrl+C UnitTestsDebugCurrentClass Starts debugging test cases located in the current source

type declaration.
Ctrl+R, Ctrl+F UnitTestsDebugFailed Starts debugging test cases that were failing in the previ-

ous run.
Ctrl+R, Ctrl+T UnitTestsDebugAtCursor Starts debugging of a test case(s) at the editor caret (cur-

sor) location. The scope is determined from the position of
the editor caret, for example, inside a method, a fixture, or
a namespace will start debugging appropriate test cases
inside of the mentioned scope.

Ctrl+R, F UnitTestsRunFailed Runs test cases that were failing in the previous run.
Ctrl+R, T UnitTestsRunAtCursor Runs test cases at the editor caret (cursor) location. The

scope is determined from the position of the editor caret,
for example, inside a method, a fixture, or a namespace
will start debugging appropriate test cases inside of the
mentioned scope.

To enable these shortcuts, open the Shortcuts options page in the CodeRush Options Dialog and click the En-
abled check box on the “Visual Studio Style” folder inside the UnitTesting parent folder (click on the image to
enlarge):

405

If you would like to assign a shortcut key for those actions that are missing them, please read the “How to assign a
shortcut key to a particular action” topic.

Configuration and options

The Unit Test Runner has two dedicated option pages in the Options Dialog. The first one is called Test Run-
ner inside the Unit Testing category. It provides you with the capability to tweak the system settings of the Unit
Testing Service as well as required paths to the testing frameworks. The second option page named Test Runner
Window allows you to configure the Test Runner tool window, its behavior and visual appearance preferences. Let’s
take a closer look at both options pages.

Test Runner

406

•	 Enable Unit Test Service

Specifies whether or not the CodeRush unit testing capability is available inside Visual Studio. If this option is turned
off, CodeRush will not search for unit test cases, will not draw testing icons inside the code editor and the capability
of running test cases will be unavailable.

Service options

•	 Send test results to Output Window. Specifies whether or not to send the Unit Test Service
messages to the Visual Studio Output window.

•	 Process every step from test steps while forming statistics. This is the MBUnit v3.2 specific
option. It specifies whether or not to treat the dynamically generated tests as a single test result (option
disabled) or multiple test results (option enabled).

•	 Summarize test run results on Visual Studio’s status bar. Specifies whether or not to show the
testing results statistics on the IDE status bar.

•	 Clear all test results when running an individual test. Specifies whether or not to clear results
of the previous test runs inside the Unit Test Runner tool window before running a single test case.

407

•	 Show test run icons in the editor. Specifies whether or not to draw clickable icons near testing
methods, test fixtures and namespaces containing test cases.

•	 Highlight the error line for a failed test. Specifies whether or not to visually highlight the line
of code inside the code editor where the test case failed with the specified background color and opacity.

•	 Execute in x64 mode if active configuration is AnyCPU. If you have an x64 operating system,
this option allows you to specify whether or not test cases are executed in x64 mode if the current solution
platforms configuration is set to AnyCPU.

•	 Do not build required projects before testing. This option forbids the rebuilding of the project
and its dependent projects before test execution. This may increase the startup time of the unit tests execu-
tion, but may produce incorrect testing results if you modified the source code before tests execution.

Thread options

•	 Max assemblies to test in parallel. Specifies the number of threads used for unit testing: 1 to 5.
This may increase the speed of unit tests execution. Note that this option is not applied to the Silverlight
unit testing framework.

Test providers options

Specifies the paths of each of the supported unit testing frameworks such as NUnit, MBUnit, MSpec, VSTest, xUnit,
SlUnitTesting, etc. This is required for a correct execution of the test cases via the Unit Test Service.

Test Runner Window

408

•	 On test item double-click. You can choose what default action should be performed when a test
case item is double-clicked inside the tool window: execute a test or navigate to a test case inside the code
editor.

Test Result Colors

Lists all available visual elements of the testing results of the tool window such as messages, call stack, delimiters
and the main area. The option page allows you to apply the default Visual Studio color or a custom one for any of the
listed items. Inside the Sample Preview area, you can see the current visual scheme and see your changes immediate-
ly to find the best visual presentation for unit testing results.

Code templates for generating unit testing code

There are many code templates available to quickly create tests, test fixtures and assertion calls for all supported unit
testing frameworks. For each test framework, they similar , so if you switched to another framework, you can use the
same code templates to generate code which will be valid in a new test framework.

Common code templates are:

Template Description
tm Creates a test method.
tc/tf Creates a test fixture (class).
tsu Creates a ‘set up’ method.
ttd Creates a ‘tear down’ method.
tfsu Creates a ‘class initialize’ method.

Asserts code templates:

Template Description
ae Creates an ‘are equal’ assertion call.
an Creates an ‘is null’ assertion call.
at Creates an ‘is true’ assertion call.
af Creates an ‘is false’ assertion call.
ai Creates an ‘ignore’ assertion call.
etc…

There are also code templates for generating test attributes and using statements with the required namespace refer-
ences.

Here are the code templates for various test frameworks:

•	 Code templates for MbUnit

•	 Code templates for MS VS testing

•	 Code templates for NUnit

•	 Code templates for xUnit

•	 Code templates for Silverlight

409

Silverlight testing framework support

The CodeRush Unit Test Runner supports running tests from the Silverlight Unit Test Framework which is a part
of Silverlight Toolkit now, so it’s easy to test your Silverlight applications.

Once you install the Silverlight Unit Test Framework, you are able to create the Silverlight Unit Test Applica-
tion project. Here is what the Add Project dialog looks with the Silverlight tab highlighted:

If you create this type of a project, you will get the source file containing a single test case. If you ever worked with
Microsoft unit testing in Visual Studio, you will find the API quite familiar, including all key classes, attributes and
namespaces: the TestClass attribute identifies the class that contains unit tests. TheTestMethod attribute identifies
methods that represent a single unit test case. Description attribute data will be shown in a runner UI when unit tests
are run. You can see the testing icons appeared immediately over the test case:

410

The test case is ready to run – you don’t have to install any other assemblies or tweak any testing settings. All you
need is justto click an icon and choose whether to run or debug the test case:

When you run a test case, the CodeRush Silverlight TestRunner window appears. It uses native support for running
Silverlight unit test cases:

411

After tests are run, the Silverlight Test Runner will be automatically closed, and you can see the test run summary in
the Visual Studio output window, inside the Unit Test Runner tool window or right in the code editor.

Support for XUnit, NUnit, MBUnit, and Visual Studio testing frameworks

In addition to the MSpec and Silverlight unit testing frameworks, the following test frameworks are supported by
the CodeRush Unit Test Runner out of the box:

•	 MbUnit, versions 2.4 and 3.2;

•	 NUnit, versions 2.2, 2.4, 2.5 and higher;

•	 xUnit, versions 1.5, 1.6, 1.7, 1.8 and 1.9;

•	 Visual Studio built-in framework for Visual Studio 2008, 2010, 2012.

To let the Unit Test Runner find and execute test cases from the mentioned testing frameworks, you should specify
the correct paths to them on the Test Runner option page if they were not resolved automatically.

Due to the extensible Test Runner architecture, you can easily add a new unit test framework support programmati-
cally.

412

413

414

Chapter 10. Code editor visualization

Structural Highlighting

Structural Highlighting helps you visually navigate the structure of the code. Matching delimiters are connected
with low-contrast lines (you can configure the color of the line for each type of code block individually) that are easy
to read when this information is important, and easy to ignore when your mind is on the code. For example, see the
vertical and horizontal lines in this code sample:

The feature is useful for understanding the flow of large methods or third-party C# code using a different leading
brace position than you might otherwise work with. It is especially useful when a code block takes up more room
than can be displayed on the screen at once.

You have complete control over how and when the line is drawn for different code elements, so you can change:

•	 Line color

•	 Line opacity

•	 Line connection style

Unfortunately, the options page (“Editor | Painting | Structural Highlighting“) in the Options Dialog is not lanp-
guage dependent at the moment, but it is planned to be improved in the future.

415

Even better, this plug-ins ships with the source code, so you might be able to add the functionality you desire.

Right Margin Line

Good code style suggests limiting the length of a code line to 80 characters, and only 70 characters for indented
code examples to be used in documentation. The Right Margin Line helps you to visually indicate the specified line
length. It doesn’t prevent typing to the right of it, but lets you to identify and break long expressions over multiple
lines.

416

On the other side, Visual Studio has built-in margin line support. You can enable it via the registry editor in the fol-
lowing entry at:

[HKEY_CURRENT_USER\Software\Microsoft\VisualStudio\%VS_VERSION%\Text Editor]

Where %VS_VERSION% is a version of the IDE you’re using, e.g. 10.0 (VS2010), 9.0 (VS2008), 8.0 (VS2005), 7
.1 (VS2003).

The following string key should be added:

“Guides”=”RGB(64,64,128), 80″

The first part specifies the color, while the other one (80) is the column the line will be displayed. This will produce
a blue margin line right before the 80th column. It looks pretty well on white and black backgrounds, but you can of
course change it easily to any color and position. Note: the registry entry is different for Express editions of Visual
Studio.

However, the Right Margin Line shipping with CodeRush Pro has a few more options you can specify on the
“Editor | Painting | Right Margin Line” options page in the Options Dialog. You can specify not only line color, its
opacity and position, but also line style and line width:

417

The Right Margin Line feature is located inside an open source “CR_RightMarginLine” sample plug-in in
the Shared Source solution of CodeRush. The feature is visual, so it is available on the DXCore Visualize toolbar:

Line Highlighter

As the name says, the Line Highlighter feature visually indicates the current line in the Visual Studio code editor.
Such a visual line indication allows you to quickly find where the tiny flashing text caret is. This is especially
valuable for large screen resolutions. This is what it looks like:

418

You are able to tweak the color and opacity of the line on the Editor | Painting | Line Highlighter options page in
the Options Dialog:

419

The feature is not enabled by default. To quickly enable it – toggle the appropriate button on the DXCore Visualize
toolbar or check the Enabled checkbox on the Line Highlighter options page:

The plug-in containing this feature is included into the CodeRush Shared Source solution. This means you can modie-
fy its source, according to your preference.

Member Icons

The Member Icons visualization feature shows small icons over each member (method, property, field, etc) or type
(class, struct, interface, etc). These icons appear to the left of a target member or type:

There are two groups of icons that can be shown:

•	 Visibility Modifier Icons, which indicate the member visibility modifier. The following visibility
modifier icons are available:

Icon Visibility modifier
Public

Internal

Internal Protected

Protected

Private
Access modifier icons can also be displayed if the visibility keyword is omitted.

•	 Member Type Icons, which indicate the type of a member. The icons differ for static (Shared)
and instance members. The following member type icons are available:

Member Instance Static
((Shared

Class

Struct

Interface

Delegate

Enumeration

Method

420

Constructor

Property

 Indexed
Property
Event

Constant

Field
You can click the member icon to present a drop-down menu of valid access modifiers for the member and several
other actions which can be performed with a member, such as:

•	 Select

•	 Comment

•	 Copy

•	 Cut

Other DXCore/CodeRush plug-ins can add additional menu items into the Member drop-down menu. An example is
the “Member Mover” plug-in, which allows you to move a particular member into a region by your preference:

421

You can also add any items into this menu programmatically.

The group of icons for members can be chosen on the Editor | Painting | Member Icons options page in the Options
Dialog. There are additional settings available, such as the opacity of the icon and several icon appearance options:

To quickly turn Member Icons on or off, use the appropriate icon on the DXCore Visualize toolbar:

Show Metrics

CodeRush Pro includes the Show Metrics (also known as Code Metrics) visualization feature, which is indented
to evaluate code metrics right in the code editor while you are writing and/or reviewing the code. It shows a specific
code metric for each method, property or event (with add and remove methods) near its declaration:

422

Code metrics itself is a set of software measures that provide developers with better insight into the code they are
developing. Using code metrics allows program managers and developers to estimate complexity of a project already
developed or even only being developed and to estimate the scope of work, stylistics of a program being developed
and efforts of every developer participating in creation of a particular solution. By taking advantage of code metrics,
developers can understand which types and/or methods should be reworked or tested more thoroughly.

However, metrics can only serve as recommendations, one cannot rely fully on them for developing software,
programmers try to minimize or maximize this or that aspect of their program and can refer to various tricks up to
reducing efficiency of the program’s operation.

The following metrics are available in the Show Metrics feature:

Metric Name Description
Cyclomatic
Complexity

Measures the structural complexity of the code. It is calculated using the number of different
code paths in the flow of the program. A program that has complex control flow will require
more tests to achieve good code coverage and will be less maintainable. To learn more about
this metric see the “Feeling the need for a new software metric” topic.

Line Count Indicates the number of lines of code. A very high count might indicate that a type or method
is trying to do too much work and should be split up. It might also indicate that the type or
method might be hard to maintain.

Maintenance
Complexity

This code metric is developed by IDE tools chief architect – Mark Miller. To some degree
it combines elements of cyclomatic complexity and number of function calls plus property
references inside a particular member. Every element of the code has a weighted point value,
all the way down to local variable declarations, assignment statements, expressions in for
loops, unary operations, etc. See the “Here’s your new code metric” topic for more details on
this metric.

You can specify the shown metric by clicking on the Metric icon and choose it from the drop down menu:

423

Or you can change it on the Editor | Painting | Show Metrics option page in the Options Dialog:

There are additional options you can specify for this feature on the options page:

•	 Enable or disable Code Metrics feature

•	 Position of the Metric icon: left of member declaration or right of member declaration

•	 Color and opacity for each code metric provider available

•	 Option that allows you to change metrics right in the code editor (by shown the drop down
menu).

You are also able to quickly enable/disable this feature on the DXCore Visualize toolbar:

Refactor! Pro contains another feature for analyzing code metrics – it is the Metrics tool window, which shows you
graphical presentation of code metrics for the entire source code tree.

You are welcome to add your own code metrics using the CodeMetricProvider DXCore component, which will be
automatically available in both CodeRush’s Code Metrics feature and Refactor!’s Metrics tool window. The fea-
ture resides in the open source “CR_ShowMetrics” plug-in sample from the Shared Source solution.

424

Flow Break Icons

Flow break icons (also known as Flow Break Evaluation feature) are visual indicators appearing in the code editor
at the end of lines containing code that can alter the flow of program execution. Flow break icons are useful when
reviewing complex code with multiple loops and/or breaks – these icons are drawn near the flow language keywords
(see the table below) which help you understand the code flow evaluation.

Hovering over these icons using the mouse cursor will show you an animated arrow pointing to the next point of exe-
cution (where the code will continue after the break). In addition, clicking on one of those icons will move the editor
caret to the target location in the source code, where the program path goes. A temporal system marker is dropped
near the icon after you click an icon, to allow you to return back when you press ESC key (within 60 seconds).

Here’s the table of flow break icons and language keywords that change the program flow:

Icon C#
keyword

VB
keyword

Target location

return Return •	 The finally statement if located inside of a try or catch block.

•	 The code line following the anonymous method or lambda expression
if located inside of these.

•	 The end of the current method or function or property accessor.
throw Throw •	 The finally statement if located inside of a try or catch block.

•	 The end of the current method or function or property accessor.
continue Continue •	 The beginning of the current loop or finally statement if inside of a

try or catch block.

425

break Exit Sub,
Exit Func-
tion, Exit
For, Exit
Do, Exit
While, Exit
Select

•	 The finally statement if located inside of a try or catch block.

•	 The statement following the current loop, if present.

goto GoTo •	 The code line with the appropriate label element.

yield return - Same as “return” icon.

yield break - Same as “return” icon.

By default, the Flow Break Icons feature is enabled. You can easily turn it off from the DXCore Visualize toolbar:

On the “Editor | Painting | Flow Break Evaluation” options page in the Options Dialog, you can specify the icon
and border opacity, arrow speed and color, etc.

XML Doc Comments Painter

The XML Doc Comments Painter feature of CodeRush Pro paints over XML documentation comments in the code

426

editor, so they are easier to read in a nice-looking form. It visually replaces all XML doc tags and make them hidden,
and leave the important information only:

instead of this:

If you want to edit an XML doc comment, just move the editor caret inside of it, so the original comment become
visible.

You can quickly toggle the availability of the feature on the DXCore Visualize Toolbar:

The feature is open source from the CodeRush Shared Source Solution, so you can tweak it, according to your prefer-
ence. There are numerous options available for you on the Editor | Painting | XML Doc Comments options page in
the Options Dialog:

427

The Enabled check box toggles the feature on or off. The most important part of the Options page is the Tag list,
where you can choose a cell (Name, Details, Remarks, Other) of a drawn table, and tweak the following options:

Option Name Description
Background Color The background color of the left column.
Font The font name used for a text in a left or right column.
Style The style of the font: Regular, Bold or Italic.
Color The color of the font for the selected tag.

The bottom part of the Options page has a Preview box where you can see the current changes you’ve made to the
feature, for example:

428

You can also bind a key to toggle functionality of the XML Doc Comments Painter, using the ToggleXMLDoc-
Comments action name.

Region Painting

CodeRush can paint region directives (#region, #endregion) in a different way than Visual Studio, to reduce the
visual noise associated with these directives when the region is expanded. Collapsed regions can also be painted in a
different color, according to your preference. If your code is full of regions, theRegion Painting visual feature will
definitely help you to concentrate and focus on the code blocks instead of insignificant stuff.

Compare these two views of a source code with the disabled feature on the left side, and enabled feature on the right:

Isn’t the view on the right much better? No? OK, you’re able to disable it. By default, the Region Painting feature is
enabled. You can disable on the DXCore Visualize toolbar which contains a set of toggle buttons allowing you to turn
of/off the Visualization features. You can also disable the feature within the “Editor | Painting | Region Painting”
options page in the Options Dialog. Here, you can also specify the color settings of collapsed and expanded regions
such as line color, fill color (background color) and text color:

429

Comment Highlighter

Occasionally you may need to note a place in a source file that needs to be revisited later for correction or improve-
ments. There are three standard codes used to designate such places: TODO, HACK and UNDONE. Visual Studio
has the built-in Task List tool window, which shows the list of such comments. To open the list, go to View menu
-> Task List:

The list of the presented comments in the window can be tweaked on the “Environment -> Task List” page inside
Visual Studio options dialog (Tools -> Options…).

CodeRush offers an additional visualization feature to highlight the most often used TODO comments, called Com-
ment Highlighter. This feature paints the ” TODO:” comment part in a low-contrast color, and the rest of the to-do

430

text in a different, higher-contrast color. The highlighting works in both CSharpand Visual Basic, and disappears once
comment is activated, in other words, the editor caret is inside of a comment. This is what it may look like:

On the other hand, you are able to change the colors used for highlighting of such comments instead of contrast
adjustment, for example:

These options can be changed on the Editor | Painting | Comment Highlighter options page in the IDETools
Options Dialog (DevExpress -> Options…):

431

Don’t forget that there are code templates you may use for creating fast comment areas , like “/t” for “// TODO”, “/h”
for “// HACK”, etc.

The feature resides in the open source “CR_CommentHighlighter” plug-in from the CodeRush Shared Source solu-
tion. This allows you to add other comments to be highlighted or improve the current implementation. The plug-in
is not installed if you have version 10.2.5 or earlier of IDE Tools. You have to compile it manually from the Shared
Source solution, located in your installation folder, e.g.

C:\Program Files\DevExpress 2010.2\IDETools\System\CodeRush\SOURCES\Shared Source.sln

In version10.2.6 and up of CodeRush Pro, this plug-in is installed, but disabled, by default. You can enable it on the
options page mentioned above.

Comment Painter

The Comment Painter feature draws a bubble icon over the comment “//” symbols in CSharp, or “ ‘ ” (single quote)
in Visual Basic. The source code of this feature shows how to paint bitmaps on the code editor. If the comment is
active (e.g. text caret is located inside the comment) then no icon is drawn, allowing you edit the comment.

432

The feature resides in the open source “CR_CommentPainter” plug-in sample from the Shared Source solution.

On the “Editor\Painting\Comment Painter” options page in the Options Dialog, you can enable or disable this fea-
ture. By default, this feature is installed but inactive (disabled). You’re also able to quickly enable/disable this feature
on the DXCore Visualize toolbar:

433

434

Chapter 11. Code refactoring support

Introduction

CodeRush is the defacto standard refactoring toolset for Visual Studio. It fuses a language-independent state-of-the-
art code shaping engine with a highly-optimized user experience. Unlike other refactoring solutions that target the
system architect, CodeRush is designed to help all developers craft and sculpt their code with the speed and efficiency
needed to meet their line of business demands. Refactor! combines extreme power with unprecedented ease of use.

Key advantages:

•	 Many time-consuming and potentially error causing code rearrangement tasks you deal with
everyday are performed automatically. In most cases, you can forget about copying pieces of code to the
clipboard, pasting them to new locations and correcting expressions to match the syntax. You can forget
about having to find and replace each and every variable, field or constant entry to change its name to avoid
breaking your code. All you have to do is press a shortcut and choose the desired refactoring – and you
automatically get the new code you need, which will compile and do exactly the same thing as your old
code did.

•	 When you write code, you focus on a single task. Assume that you are writing a method that uses
the same number or string in several places, so you want to create a constant which will make it easier to
manage the code. If you’re not using CodeRush, you’ll have to decide whether to create it immediately
(moving the caret, introducing a constant, returning to the method you were writing) or introduce it after
you’ve finished with the method (moving the caret, introducing the constant and then accurately replac-
ing all the necessary entries). With CodeRush, you don’t have to choose – just write the code using your
numbers or string – CodeRush will introduce a constant when you ask, and it will replace all the entries,
so that you don’t have to jump around in your code. This means you can focus on the functionality and not
the formatting and syntax. If you are writing a complex method and thinking of extracting a part of it into
another method, you will also be happy with CodeRush. Just concentrate on the method without worrying
about the formatting, CodeRush will handle this for you. After you’ve finished, CodeRush will extract the
piece of code you select, and automatically create the correct syntax. And there are many more examples…

What is refactoring? Benefits of a code refactoring

“Refactoring is a disciplined technique for restructuring an existing body of code, altering its internal structure
without changing its external behavior. Its heart is a series of small behavior preserving transformations. Each
transformation (called a ‘refactoring’) does little, but a sequence of transformations can produce a significant
restructuring. Since each refactoring is small, it’s less likely to go wrong. The system is also kept fully working after
each small refactoring, reducing the chances that a system can get seriously broken during the restructuring.”

Martin Fowler, www.refactoring.com

Code refactoring is the process of changing a computer program’s source code without modifying its external
functional behavior, in order to improve some of the nonfunctional attributes of the software. Advantages include
improved code readability and reduced complexity to improve the maintainability of the source code, as well as a
more expressive internal architecture or object model to improve extensibility.

Refactoring is usually motivated by noting a code’s smell. For example the method at hand may be very long, or it
may be a near duplicate of another nearby method. Once recognized, such problems can be addressed by refactoring
the source code, or transforming it into a new form that behaves the same as before, but that no longer “smells”. For
a long routine, extract one or more smaller subroutines. Or, for duplicate routines, remove the duplication and utilize
one shared function in their place. Failure to perform refactoring can result in accumulating technical debt.
There are two general categories of benefits to the activity of refactoring:

435

1. Maintainability. It is easier to fix bugs because the source code is easy to read and the intent of
its author is easy to grasp. This might be achieved by reducing large monolithic routines into a set of indi-
vidually concise, well-named, single-purpose methods. It might be achieved by moving a method to a more
appropriate class, or by removing misleading comments.

2. Extensibility. It is easier to extend the capabilities of the application if it uses recognizable de-
sign patterns, and it provides some flexibility where none may have existed before.

From www.wikipedia.org – Code refactoring

If we take a look at the refactorings provides, we may see that the list is very long. This may make you think that per -
forming a refactoring can be a difficult task. For example, to use built-in Visual Studio refactorings, you need to use a
menu, or remember all shortcuts for every refactoring. However, on the other hand, in CodeRush there’s only a single
shortcut to perform a refactoring on a block of code. By default, the shortcut is bound to CTRL+` (back tick). This
shortcut brings a popup menu with available refactorings at the caret position. There are also a few different ways to
perform a code refactoring.

Almost all refactorings have a preview hint which allows you to see the resulting code before a particular refactoring
is performed – to learn more, see the “Refactorings preview hinting” topic.

How to perform a code refactoring

There are several methods which allow you to perform a particular refactoring. Multiple methods are provided to
ensure that you feel comfortable inside the Visual Studio IDE. These approaches are available:

•	 The Refactor! popup menu (shown via a single shortcut)

There is a built-in shortcut that invokes the Refactor! popup menu and lists all available refactoring/code operations
for the current caret position and/or code selection. The default shortcut is the CTRL+` (back tick) key combination.
Note, that you can configure the shortcut to immediately apply a refactoring if only one operation is available. See the
“IDE tools smart tag” section below to learn more about possible options.

You can also create custom shortcuts to invoke the specific refactoring immediately, without having to go through the
popup menu. To learn more, see the “How to assign a separate shortcut to a particular refactoring“ topic.

•	 DXCore smart tag (and/or Visual Studio’s smart tag)

436

The other way of invoking the Refactor! popup menu is to click a DXCore smart tag. The type of a smart tag style
is configurable, so you may use the built-in Visual Studio’s smart tag instead. You can tweak lots of the DXCore
smart tag’s options on the “Smart Tags” options page in the Options Dialog. The page allows you to choose whether
to use the DXCore or Visual Studio’s smart tag, appearance of the DXCore smart tag, presence of smart tag items
in the Visual Studio’s context menu and the default behavior of the smart tag shortcut, when only one operation is
available.

•	 Visual Studio’s context menu

IDE tools integrate their items into the Visual Studio’s code editor context menu. You can configure adding these
items on the same “Smart Tags“ options page above.

437

•	 Intelligent Paste

Some refactorings/code operations can be applied by cutting a particular code block and pasting it at a particular
position. This feature is only available for a small subset of refactorings that involve moving code blocks. These
refactorings are:

•	 Extract Method

•	 Introduce Local

•	 Declare Method

Note: you can control the availability of Intelligent Paste and its behavior via the “Editor | Clipboard | Intelligent
Paste Setup” page in the Options dialog. The page allows you to change the maximum number of lines that you can
cut and paste to apply the Intelligent Paste feature.

Refactorings preview hinting

Almost all refactorings have a preview hint which allows you to see the resulting code before a particular refactoring
is performed. This is very useful, because it is a great help to understand what will happen in the code once an action
is taken. Moving among available refactorings in the Refactor! popup menu or a SmartTag popup menu will be
reflected in the preview for each one. Here are previews of some possible refactorings you can perform using the Re-
factor! popup menu:

438

While the Refactor! popup menu is up, you are able to control preview hinting by holding the following keys:

•	 CTRL – will hide the menu and the big yellow hint with a description of a refactoring.

•	 SHIFT – will hide the resulting code preview window with a blue arrow pointing to the target
code location

NOTE: these two keys aren’t available if you’re using a different way of listing available refactorings, e.g. SmartTag
popup menu.

Refactorings that change signatures

439

Add Parameter

The refactoring adds a new parameter to a method declaration and updates all calls accordingly. This refactoring
is useful when you need to quickly add a new parameter to an existing method because it needs more information
from its caller that wasn’t passed in before. Bear in mind that if there are alternatives available against doing this
refactoring, it is preferred to use those alternatives instead, because they don’t lead to increasing the length of
parameters lists. Long parameter lists are hard to remember and often involve data clumps.

Opposite:

The opposite of this refactoring is the Remove Parameter refactoring. As an alternative you may use the Introduce
Parameter Object refactoring, which consolidates selected parameters of a method into a single class or structure, and
simplifies the method’s parameters list.

Sample:

The interactive phase of refactoring:

Result:

440

Notes:

•	 This refactoring enables Text Fields to make it easier for you to type the parameter type and
name.

•	 Once you’ve finished entering the parameter type and name, each method call is updated with a
new parameter. An empty value corresponding to the specified type is used by default (0 for integer, String.
Empty for string, etc).

•	 Automatically created Navigation Links allow you to easily navigate through all method calls
and change default parameter values.

•	 A marker is dropped at parameter declaration statement. This allows you to easily get back to the
method declaration when you are done with parameter values.

•	 The refactoring is pretty simple and doesn’t have any options available.

Create Overload

The process of creating more than one method in a class with the same name is called as method overloading. Method
overloading allows the developer to define several methods with the same name but with a different set of parameters.
This way, one does not have to remember the names of multiple functions that serve a similar core purpose. When a
call is made to one of these overloaded methods, the compiler automatically determines which of the methods should
be used according to the arguments used in the call.

For method overloading purposes, you can utilize the Create Overload refactoring. Once you apply the refactoring
on a method:

441

you can choose the destination of the new overload with the target picker:

When you are done with target selection, press Enter to commit. Now, you are able to choose what parameters you
want to remove from the initial method to create a new overload. Initially, the newly declared method has the same
signature as the source method:

442

While overloading methods, a rule to follow is that overloaded methods must differ, either in the number of ar-
guments they take or the data type of at least one argument. The refactoring allows you to remove any number of
parameters to create a new overload. If you want to add an additional parameter, use theAdd Parameter refactoring
for this purpose.

The shortcuts hint will help you with the available keyboard keys used to remove parameters. You can use arrow keys
to select a parameter, and the Space bar to remove the currently selected parameter. The preview hint will illus -
trate the resulting method overload declaration, which parameters will be removed, and how the parameters will be
replaced with the local declarations initialized to default values:

443

You can also create overloaded constructors as well as methods. In this case, the additional constructors are simply
added to the code with a call to the source constructor:

444

The XML documentation attached to a member is also updated correspondingly.

Decompose Parameter

The Decompose Parameter refactoring splits a single parameter into one or more parameters, depending on the
function of the original parameter. The refactoring analyzes how the parameter is used and which of its properties are
accessed, after which it can replace a single parameter into several others of the appropriate type for each property
being accessed through the original parameter.

If the parameter serves as a container for other objects, it will be split into its internal objects that are used in the
code. For example, this allows you to create different overloads of a method and may create the method with the
widely used parameters. Consider the following class:

1

2

3

4

5

class Square

{

 public System.Drawing.Size Size { get; set; }

 public System.Drawing.Point Location { get; set; }

}

And a helper method that returns the area of the squire:

1

2

3

4

public int GetArea(Square square)

{

 return square.Size.Height * square.Size.Width;

}
You can split the squire parameter into two parameters – height and width:

445

and get the following method:

1

2

3

4

public int GetArea(int height, int width)

{

 return height * width;

}

The new method allows you to pass the height and width without creating the Square object.

The opposite of the Decompose Parameter refactoring is the Introduce Parameter Object refactoring.

Introduce Parameter Object

The Introduce Parameter Object refactoring consolidates selected parameters into single object. If you frequently
need to pass similar sets of values to methods that tend to be passed together, it might be useful to encapsulate these
values into an object that carries all of this data. It is worthwhile to turn these parameters into objects just to group the
data together. As the result, calling statements will become more compact and you will be able to add data processing
logic to the newly declared object. This refactoring is also useful because it reduces the size of the parameter lists,
and long parameter lists are hard to read and understand.

The most useful benefit of this refactoring is that once you have clumped together the parameters, you’ll soon see
behavior that you can also move into the new object. Often the method bodies have common manipulations of the
parameter values. By moving this behavior into the new object, you can remove a lot of duplicated code.

Opposite:

The opposite of this refactoring is the Decompose Parameters refactoring.

Sample:

Result object:

446

Calling side:

447

Notes:

•	 This refactoring automatically declares a new class or structure. The created object has a con-
structor that initializes all properties to values passed as parameters. All initialized values can be accessed
via public read-only properties, which replace simple parameters in the original code. Note that Introduce
Parameter Object uses public read-only fields instead of properties. See Options below.

•	 All method calls are automatically updated to pass the newly declared object instead of multiple
parameters.

Options:

The Editor | Refactoring | Introduce Parameter Object page of the Options Dialog allows you to specify whether
to declare a class or a struct, where to declare it, and whether it should have properties or fields in it.

Convert to Point

The Convert to Point refactoring is based on the Introduce Parameter Object refactoring with the difference that
it doesn’t create a new object for parameters. Instead, it uses a ‘Point’ structure when there is a pair of two numeric
parameters of a method definition are selected.

Depending on the project type and numeric parameter types, the Convert to Point may use one of the following
Point structures:

448

•	 System.Drawing.Point

•	 System.Drawing.PointF

•	 System.Windows.Point (in WPF)

Note however, if the project doesn’t reference the assemblies for the Point structure (e.g. System.Drawing.dll) the
refactoring won’t be available.

The Convert to Point can be useful when you work with graphics and appropriate graphic objects, for example:

1

2

3

4

void DrawLine(int startX, int startY, int endX, int endY)

{

 _Graphics.DrawLine(Pens.White, startX, startY, endX, endY);

}

In the code preview hint you are able to see the resulting code:

Applying it twice will result in:

1

2

3

4

void DrawLine(Point start, Point end)

{

 _Graphics.DrawLine(Pens.White, start.X, start.Y, end.X, end.Y);

}

All calling sites will be updated automatically once the refactoring is performed.

Convert to Tuple

The Convert to Tuple refactoring shipped in Refactor! Pro is similar to the Introduce Parameter Object refactoring,
but it doesn’t create a new object – it uses the built-in .NET Framework 4.0 Tuple object.

The Tuple object should have at least one component, and can have a maximum of 8 components. So, there are 8
different Tuple classes:

449

1. Tuple<T1>

2. Tuple<T1, T2>

3. Tuple<T1, T2, T3>

4. Tuple<T1, T2, T3, T4>

5. Tuple<T1, T2, T3, T4, T5>

6. Tuple<T1, T2, T3, T4, T5, T6>

7. Tuple<T1, T2, T3, T4, T5, T6, T7>

8. Tuple<T1, T2, T3, T4, T5, T6, T7, TRest>

You can instantiate a new Tuple object using any of these classes depending on the number of arguments you
will pass. Also, there is the special static Tuple.Create method which has 8 overloads, each of them taking … 1
8 arguments. The Tuple object will expose the Item1 … Item8 properties, returning the values of the passed-in
arguments of the appropriate type. Actually, Tuple supports more than 8 arguments as it expects the 8th argument as
another Tuple, e.g.:

Tuple<Int32, Int32, Int32, Int32, Int32, Int32, Int32, Tuple<String, String, String>>

Here’s a sample where the Convert to Tuple might be useful. The sample method imports some data into an SQL
data base. The data consists of four objects – we’ll store these objects as a single Tuple object.

450

Convert to Size

The Convert to Size refactoring from DevExpress Refactor! Pro consolidates selected numeric parameters into
a System.Drawing.Size (System.Windows.Size in WPF projects) or SizeF object. It might be useful to combine
two parameters into a single parameter, reducing the overall number of method parameters and increasing code
readability.

The refactoring is available when two parameters are called ‘width’ and ‘height’, or parameter names end with the
‘width’ and ‘height’, for example:

All calling sides are updated correspondingly when the refactoring is performed:

The opposite of the Convert to Size refactoring is the Decompose Parameter refactoring.

Converting between static and instance members

Classes allow you to create instance members and static members. Instance members are available when an instance
of the class is created and have access to the object’s data. Static members do not require an object created and can be
called directly.

Static methods are useful when creating functions that are not reliant on any instance of a class. An example of the
extensive use of static members is the System.Math class, which is a library of mathematical functions and constants
provided by the .NET framework.

If you declare instance fields, they are created and initialized when an instance of the class is created. Static fields
apply only to the class itself. No matter how many instances of a class there are, there is only one instance of that
classes’ static fields. In contrast, instance fields may have different instances and values for each class instance creat-
ed. Theoretically, static members perform faster than instance members, because there is no need to create an instance
of a class. However, the penalty for using instance methods is minor and should only be noticeable when calling

451

billions or trillions of members. If the software that you are developing is performance critical, it may be worthwhile
to convert some instance members to static members. But bear in mind, that may decrease the readability and main-
tainability of the code.

To help you easily convert static members into instance members and vice versa, Refactor! Pro provides two refactory-
ings:

•	 Make Member Static

•	 Make Member Non-static

The first one allows you to convert an instance member that can be made static into a static one. An instance mem-
ber should not reference any other instance members to be static. The refactoring not only adds a static keyword
(‘Shared’ in VB) but also updates all references accordingly:

Applying the refactoring will result in the following code:

452

The second refactoring is the opposite of the first one. If you have a static method – it can change it to a regular in-
stance member, and replace its references with a new class instance creation and with an appropriate call to the source
member:

Applying the refactoring will result in the following code:

Both refactorings are available for methods, properties and field members of a class. You can see the ‘Member
can be static‘ (or ‘Member can be shared‘ in VB) code issue if you have CodeRush Pro installed and the Code
Issues feature is turned on:

453

Promoting locals and constant value expressions into parameters

There are times when you realize that a local variable or a field reference within a method would be more useful if it
was a parameter. Having a new parameter on a method will increase its flexibility for consumers. To convert the local
variable, you should remove its declaration from the body of the method, add it as a parameter and replace all occur-
rences of a local to a new parameter. The same steps must be performed in the case of field references. Furthermore,
all method references in the entire solution should be updated to pass a new value as an argument to a method with a
new signature.

With the help of the Promote to Parameter refactoring, you can promote local variables, field references and any
primitive values into parameters and make the required updates to the code automatically.

Choose a local variable, a field reference or a constant value and apply the refactoring to promote it into a parameter:

A field reference:

A local variable:

454

A constant value expression:

In every case, a new parameter is added and all calls to the method are updated as required. You can immediately
rename a new parameter according to your preference.

A second version of the refactoring called Promote to Parameter (optional) behaves in absolutely the same manner

455

as its original version. The difference between two refactorings is that the latter creates an optional parameter instead
of the usual parameter:

Optional parameters provide default values within the member’s signature. So, if an argument is omitted from a call
to that method, the default value will be used instead:

If we compare the Promote to Parameter refactoring to the Promote Local Variable to Parameter refactoring
built-in to Visual Studio (VS refactoring), we see the following advantages of the refactoring shipped in CodeRush:

•	 The VS refactoring does not allow you to create optional parameters

456

•	 The VS refactoring can not be applied on the field reference within a method body

•	 The VS refactoring can not be applied on constant value expressions within a method body.

Reordering method parameters

Sometimes you may find that various method parameters are ordered illogically, or when method parameters appear
in a different order relative to one another, similar methods. In this case, if you prefer the parameters appear in a
consistent and logical order, you must not only change the order in the method signature but also update all calls to
the method. Take into account complex cases when you can move return values of a function into our parameters and
vice versa. Refactoring such complex cases is a rather complex and time-consuming task, especially if there are too
many calls.

The Reorder Parameters refactoring from CodeRush can perform this task automatically and make reordering
parameters fun:

It has a great animated interactive phase where you choose parameter positions that you’ve never seen before (unless
you’ve used this CodeRush refactoring earlier). Here is it in action:

457

Once the refactoring is applied, all method calls are modified automatically in the entire solution along with method
overloads, if any.

Of course, you can use the built-in Visual Studio refactoring version. The built-in refactoring command provides a
dialog window that allows you to change the order of the parameters for a method as follows:

The dialog window shows the method’s parameters. To change the order of parameters, click the item that you wish
to move in the list. Then, click the up or down arrow buttons to move the selected item. A preview method signature
is displayed as you make changes. Once you are done with the new signature, click the OK button to perform the
updates.

All in all, it’s up to you to decide which version of the refactoring – CodeRush or Visual Studio, is more convenient.
However, if we compare the Reorder Parameters refactoring shipped in CodeRush and the Reorder Parame-
ters refactoring built-in to Visual Studio (VS refactoring), we see the following advantages in the refactoring shipped
in CodeRush:

•	 The VS refactoring does not allow you to move out parameters to a return value, but CodeRush
refactoring does;

•	 The VS refactoring does not allow you to convert the return value to an out parameter, but
CodeRush refactoring does;

•	 The CodeRush version of the refactoring provides an advanced preview hint of changes that are
being applied to the resulting method declaration, for instance, if you are moving the return value to an out
parameter for this method:

458

The refactoring must change all return statements and assign the returned value to the new out parameter as follows:

The CodeRush refactoring has several options available on the Editor | Refactoring | Reorder Parameters option page
in the Options Dialog. You can tweak the following options for this refactoring:

•	 The ‘Animate parameter reordering’ option specifies whether or not an interactive animation is
enabled.

•	 The ‘Use hint for the code changes’ option specifies whether or not additional preview hints are
enabled.

•	 The ‘Leave changed code as comments’ option specifies whether or not modified code changes
should be left in comments for a future code review.

459

Safe rename a public API member and mark it obsolete

There are times when public API members must be deprecated or its signature must be changed. In this case, we can
not remove or modify public members, because other application that depend on these APIs may become broken and/
or uncompilable. If you’d like to supersede a public member, you can use a special attribute called ‘Obsolete’. The
Obsolete attribute marks an API member as one that is no longer recommended for use.

The Obsolete attribute is useful for refactoring and general management of your project’s source code over the devel-
opment life cycle. Each use of a member marked obsolete will subsequently generate a warning or an error, depend-
ing on how the attribute is configured.

To create a new public member based on the old one, you can utilize the Safe Rename refactoring. The refactoring
creates a copy of a non-private method or property in the class in a manner that will not break any dependent code,
such as code in third-party applications that use that member.

Consider the following public member:

Since you know that you will want to deprecate this code, marking the method with the Obsolete attribute will be a
constant reminder for you and code consumers that its use is not recommended. The displayed message can also ex-
plain the reason why the member is obsolete as well as provide an alternative. The refactoring adds the corresponding
message for you once you apply it:

It also adds the EditorBrowsable attribute which specifies the browsable state of a property or method from within the
code editor.

By providing a permanent reminder about unrecommended code, the refactoring helps in versioning software pro-
grams and coordinating the methods employed by different developers. This technique plays a vital role in the design
of software that gets updated with newer versions and needs to be used by other consumers without breaking the
existing applications. That is why it allows you to maintain the software’s backward compatibility and code maintain-
ability throughout the development life cycle.

Remove Parameter

Also known as Remove Unused Parameter. This refactoring removes an unused parameter from a method declar-
ration, and updates all calls accordingly. It is very useful when a parameter is no longer used by the method body. A

460

spurious parameter doesn’t cause any problems, and you probably might need it again later. But most of the time this
is the wrong choice, because a parameter indicates information that is needed. In this case, a caller has to worry about
what values to pass for a fictitious, unused parameter. By not removing the parameter you are making further work
for everyone who uses the method.

Opposite:

The opposite of this refactoring is the Add Parameter refactoring.

Sample:

Result:

461

Refactorings conditionals

Refactoring multi-conditional statements: the switch statement and the “if-else-if” ladder

There are two methods for multi-conditional processing: the “if-else-if” ladder and the switch statement. The If-Else-
If ladder is a combination of ‘if’ and ‘else’ statements that is used to test a series of conditions. If the condition of the
first ‘if’ statement is met, the code within the ‘if’ executes. Otherwise, the program flow is passed to the neighbor-
hood ‘else’ statement, in which the next ‘if’ statement is located. This continues as a series of ‘if’ statements nested
within the previous ‘else’ statements until all conditions have been checked. A default branch or a code block may be
executed in a final ‘else’ statement if no condition is previously met.

The switch statement is similar to the ‘if-else-if’ ladder as it provides multiple branching. In the case of the switch
statement, the value of a variable or expression is tested against a series of different values (cases), until a match is
found. The code block within the matched case statement is executed. If none of the cases match, then the optional
default case is executed.

We can find the following differences between these two multi-condition evaluation approaches:

•	 the switch statement is generally considered easier to read;

•	 the switch statement is less flexible than the if-else-if ladder, because it only permits testing of a
single expression against a list of discrete values;

•	 the switch statement is generally considered to be more efficient, because the compiler is able
to optimize the switch statement. The compiler may re-order the testing to provide the fastest execution,
because each case within a switch statement does not rely on previous cases. In the case of the if-else-if
ladder, the code must process each if statement in the order determined by the developer.

All in all, it is up to you to choose the option that makes the code more readable and maintainable and which ap-
proach to use: the “if-else-if” ladder or the switch statement. To help you easily convert one approach to another and
vice versa CodeRush bundled with Refactor! Pro contains two refactorings:

•	 Conditional to Case

•	 Case to Conditional

The Case to Conditional refactoring converts the switch (C#, C++) or Select (VB) statement into a combination of
if/else statements, e.g.:

462

Result:

463

The Conditional to Case refactoring is the opposite of the Case to Conditional refactorings which converts a set of
if/else statements into a switch/Select statement:

464

Both refactorings are available in C#, Visual Basic and C++ languages.

Refactoring ternary expressions into null-coalescing operations and vice versa

There are two interesting refactorings shipped in Refactor! Pro:

•	 Compress to Null Coalescing Operation

•	 Expand Null Coalescing Operation

The first one converts a ternary expression into an equivalent null coalescing operation. The second one is the oppo-
site of the first one – it converts a null coalescing operation to an equivalent ternary expression. Both refactorings are
available in CSharp only, because Visual Basic, for example, doesn’t have a null coalescing operator.

465

Here’s an excerpt from the C# language specification about the null coalescing operator for reference:

•	 A null coalescing expression of the form a ?? b requires a to be of a nullable type or reference
type. If a is non-null, the result of a ?? b is a; otherwise, the result is b. The operation evaluates b only if a
is null.

•	 The null coalescing operator is right-associative, meaning that operations are grouped from right
to left. For example, an expression of the form a ?? b ?? c is evaluated as a ?? (b ?? c). In general terms,
an expression of the form E1 ?? E2 ?? … ?? EN returns the first of the operands that is non-null, or null if
all operands are null.

So, the null coalescing operator provides an effective, compact way to check whether a value is null, and if so, return
an alternative value. For example:

1 Brush myBrush = GetCachedBrush() ?? new SolidBrush(Color.Black);

In the code above, if the return value of GetCachedBrush() is not null, it is assigned to the myBrush variable. Other-
wise, if it is null, a new SolidBrush is created and assigned.

The ?? operator is also useful for output. For example, instead of using the ternary operator,

1

2

String userName = GetUserName();

Console.WriteLine(userName != null ? userName : «User doesn’t exist.»);

You can apply the Compress to Null Coalescing Operation refactoring:

(click on the image to see it in the original size)

and use the null coalescing operator instead:

1

2

String userName = GetUserName();

Console.WriteLine(userName ?? «User doesn’t exist.»);

The Expand Null Coalescing Operation can be useful when you would like to change the condition of the check,
for example. From a null check to something different, e.g.:

466

1 Console.WriteLine(userName != String.Empty ? userName : «User name is
undefined.»);

The preview hint of the refactoring will show you the resulting code before you apply it:

(click on the image to see it in the original size)

Flatten Conditional

This is one of the most powerful refactorings for conditionals – it helps you to simplify conditional statements by
unindenting all or a portion of the conditional statement which improves the clarity of the code. This refactoring
includes several different refactorings mentioned in Martin Fowler‘s book, and a few others. These refactorings are
applied, depending on the conditional blocks you have inside the source code. Here they are:

•	 Replace Nested Conditional with Guard Clauses

Replaces nested conditional with a guard clause, inverting the if-clause expression and exiting the code block if the
new expression is satisfied. When the conditional behavior does not make the normal path of execution clear, you can
remove nested if conditions with a series of separate if statements, for example:

Before refactoring:

467

Result:

•	 Remove Redundant Conditional

Replaces conditional with a single statement, for example:

Before refactoring:

468

Result:

This part of the refactoring can also simplify ternary expressions:

Before refactoring:

Result:

As usual, you can see the preview hint, showing you the resulting code before applying the refactoring:

•	 Reverse Conditional followed by Remove Redundant Conditional

Inverts the logic of the conditional statement and unindents the redundant ‘else’ block, for example:

Before refactoring:

469

Result:

•	 Remove Redundant Else

Removes the ‘else’ block delimiters and unindents it, for example:

Before refactoring:

Result:

All of these refactorings are performed by Flatten Conditional. The refactoring fixes the following code issues:

•	 Nested conditional can be flattened

•	 Redundant Else Statement

Refactorings declarations and initializations

Refactorings for implicitly-typed local variables

Implicitly-typed local variables are variables declared without specifying the type explicitly. The type of such
variables is being inferred from the expression that is used to initialize the variable at the time the code is compiled.
Implicitly-typed variables are really useful for LINQ that creates anonymous types in queries, and for which you
want to assign variables. However, implicitly-typed locals can be used with any variable declaration to enhance the
readability, for example:

470

This implicitly-typed local variable will have the ‘double’ type. Or, better yet, this sample:

This code does not look impressive. If you don’t use implicitly-typed variables, you are forced to type the entire type:
Dictionary<String, List<Int>>, instead of simply ‘var‘:

DevExpress Refactor! Pro and CodeRush Xpress has two refactorings, that allow you to convert from the implicitc-
ly-typed variables into explicitly-type variables, and vice versa. Here they are:

Make Implicit

Converts an explicitly-typed variable declaration to an implicit one. This is a simple refactoring which removes the
type of a variable and makes it an implicitly-typed variable:

But sometimes, it does not only removes the type of a variable, but also converts an expression, so the compiler infers
the type correctly without changing the logic of the code. Consider the following declaration:

or this:

Applying the Make Implicit will result in producing the following code:

and

Make Explicit

Converts the implicitly-typed local variable to a variable with an explicit type. This refactoring determines the type of
the implicitly-typed variable before you compile the code and explicitly specifies it:

471

There is also an advanced version of the Make Explicit refactoring called Make Explicit (and Name Anonymous
Type). This refactoring converts the implicitly-typed local variable to a variable with an explicit type, then creates a
named type to represent the expression of an anonymous type declaration, and replaces the anonymous type with a
newly-declared type. To learn more about this refactoring, you may read the corresponding topic about refactorings
for anonymous types.

Both Make Implicit and Make Explicit refactorings are available in CSharp and Visual Basic programming
languages where implicitly-typed variable declarations are allowed starting from Visual Studio 2008 and the
corresponding language versions.

Use Named Arguments

Named Arguments is a feature of the C# and Visual Basic languages introduced in the .NET Framework version 4.0.
Named arguments allow you to explicitly specify a name for an argument for a particular parameter by associating
the argument with the parameter’s name, rather than with the parameter’s position in the parameter list. Using named
arguments frees you from the need to remember or to look up the order of parameters in the parameter lists of called
methods.

The Use Named Arguments refactoring shipped in Refactor! Pro converts position-based arguments inside a usual
call to a method with a call with named arguments, for example:

1 DrawPoint(10, 8, 12);
Result:

1 DrawPoint(x: 10, y: 8, z: 12);
In the code preview hint you are able to see the resulting code:

472

Named arguments become very useful when a method definition also contains several optional parameters, and you
want to specify which arguments you are passing. For example, we have the following method declaration:

1

2

3

4

void DrawPoint(int x = 0, int y = 0)

{

 // code goes here...

}

We could use named arguments to call the above method in any of the ways below:

1

2

3

4

5

DrawPoint ();

DrawPoint (x: 10);

DrawPoint (y: 10);

DrawPoint (x: 10, y: 10);

DrawPoint (y: 10, x: 10);

Because both parameters of a method definition are optional, the first three cases will call a method with the default
value passed for all non-specified arguments.

Name Anonymous Type

Anonymous types are type declarations that are generated automatically by the compiler without having to explicitly
declare it. They provide a convenient way to encapsulate several read-only properties into a single object that is not
declared in the code. Anonymous types are supported by C# and Visual Basic programming languages starting from
Visual Studio 2008.

473

After you create an anonymous type object, you can assign it to an implicitly-typed local variable like this:

The compiler will automatically generate a new class for this anonymous type. If you want to persist it and have a
source code of the class, you can automatically convert an anonymous type into a named type by using the Name
Anonymous Type refactoring shipped in Refactor! Pro and CodeRush Xpress. This refactoring replaces an anonyX-
mous type with a one-to-one class declaration that is generated by the compiler. Additionally, all other anonymous
types in this project having the same shape will also be replaced by the new type.

Consider the following code with two anonymous types:

Applying the Name Anonymous Type:

will result in the following class generated, that we immediately rename to “Car“ (click the image to enlarge):

474

And creation sides are changed to this:

Now you can declare instances of this class and extend the class as you desire.

There is one more similar refactoring for anonymous types – the Make Explicit (and Name Anonymous Type). In
addition to creating a named type declaration that represents an anonymous type, it converts the implicitly-type local
variable to a variable with an explicit type, replacing other anonymous types in this project having the same shape by
the new type declaration:

Refactorings anonymous methods and lambda expressions

An anonymous method is a method without a name – which is why it is called anonymous. You don’t declare anon-
ymous methods like regular methods. Instead, they get declared right inside a member as an inline code block. This
is one of the greatest benefits of an anonymous method – it removes the requirement to create a named method else-
where in the code, especially for simple operations. For example, you are able to pass an inline anonymous method as
a delegate parameter, which means that you can use anonymous methods anywhere a delegate type is expected:

475

Lambda Expressions are simply an improvement to the syntax of anonymous methods. In other words, a lambda
expression supersedes anonymous methods as a shorter way to write inline code. There is no longer a need to use the
‘delegate’ keyword, or provide the type of the method parameter. The type of a parameter can usually be inferred by
the compiler from its use. The sample code above will look like this using lambda expressions:

The code looks much simpler and readable now. However, it takes some time to “acclimate” to this syntax. Dev-
Express Refactor! Pro and CodeRush Xpress has two pairs of refactorings, which are opposites of each other, and a
couple of bonus refactorings for anonymous methods and lambda expressions. Before you apply a refactoring, you
can see what your code will look like and learn the new syntax.

Pair #1 – conversion between anonymous methods and lambda expressions

•	 Compress to Lambda Expression

Converts an anonymous method into an equivalent lambda expression:

•	 The opposite: Expand Lambda Expression

Converts a lambda expression to an equivalent anonymous method:

Pair #2 – conversion between anonymous methods and regular methods

•	 Name Anonymous Method

Converts an anonymous method declaration that does not access local variables to a regular method declaration. The
refactoring might be useful to make anonymous methods reusable in other locations. For example, when a single
event handler is used for different events (especially when an events subscription code is located in different mem-
bers):

476

Naming anonymous methods will result in the following code:

•	 The opposite: Inline Delegate

Converts a regular method into an anonymous method. If there are no other references to the delegate method, the
method is removed.

477

•	 Introduce ForEach Action

Converts the generic List-iterating foreach loop into an anonymous method, which is passed as the Action delegate to
the List.ForEach method. The ForEach method on a generic list performs the specified action on each element of the
List. Consider the following code:

Here’s the preview hint for this refactoring:

and the resulting code:

•	 Remove Redundant Type Specification

Removes the redundant lambda parameter explicit type specification. The lambda expression may specify the type
of its parameters explicitly, which is not required in most cases. The refactoring allows you to clean-up the lambda
expression from the redundant type specification from this code:

478

to this:

Refactoring loops and blocks

Adding and removing block delimiters in C#/C++ and JavaScript

In C#, C++ and JavaScript languages, curly braces are used as block delimiters. A block allows multiple statements to
be written inside. If a block contains a single statement, block delimiters, in most cases, are optional. For example, a
single statement inside a loop does not require block delimiters:

There are two refactorings shipped in DevExpress Refactor! Pro and CodeRush Xpress that help you to add or res-
move optional block delimiters:

•	 Add Block Delimiters

•	 Remove Block Delimiters

The Add Block Delimiters refactoring embeds a single statement into curly braces. This refactoring is available at
the start of the statement:

Applying this refactoring may increase code readability and allow you to make the parent block a multi-statement
block, so you can add additional statements inside, for example:

479

The Remove Block Delimiters refactoring, on the other hand, removes optional curly braces if appropriate. It is
available on a curly brace:

This may also improve readability in certain cases:

As always, refactorings are smart, and are not available where they are not appropriate.

Converting loops: ForEach to For and back

Let’s take a look at the two CodeRush refactorings allowing us to convert a for-loop into foreach-loop, and a
foreach-loop into for-loop, and compare these two loops to see what the difference is between them and which one is
preferred.

The for-loop is useful for iterating over elements and for sequential processing. It uses an iteration variable and is
good when iterating over many items sequentially with a precise condition of the iteration termination. No collection
of elements is required, but we can use the iteration variable to index a separate collection. In its basic form, the loop
contains three sections:

1. An initialized iteration variable which specifies where to start;

2. A condition for the loop termination;

480

3. An iteration expression which modifies the iteration variable value.

The initialization, condition and iteration sections control how the loop will operate at run-time. Here is an example
of a simple for-loop:

And one more example:

Notice that the second loop iterates over array items starting from the very first item until all items are cycled. In such
cases, when you require to cycle through each object in an array or a collection and when each item should be pro-
cessed in turn, the foreach-loop might be more preferred. When the foreach-loop is used, each item in the collection is
processed in series until every item has been referenced, or the loop has been terminated by a break command. It has
two sections instead of three as the for-loop:

1. The type which determines the data type of the iterator during the loop’s execution.

2. The collection section which names the collection or array that is to be cycled through.

Here is what it looks like if we cycle through the same numbers array as before:

Which is much easier to read then the same for-loop, isn’t it?

The For to ForEach refactoring allows you to automatically convert the for-loop that iterates over items of a
collection or array into the simpler foreach-loop. Just place the editor caret on the for-loop and press the CodeRush
shortcut, you will see the preview hint of the resulting code. Once the refactoring is applied, the loop type is
converted without modifying the logic of the code:

However, sometimes when you need to modify the way the loop iterates over items, you might want to do the oppo-
site operation – convert the foreach-loop into a for-loop, because the iteration variable in the for-loop provides more
flexibility than a foreach-loop. Using the for-loop, you can iterate in a back order, or iterate over even indexes, or use
other iterating algorithm, for example:

481

This loop increments the iteration variable by 2 each step of the loop. This means that the loop will iterate only over
the even items of the array whereas the foreach-loop does not provide the capability to control which items and in
which order are iterated. To help you to easily convert the foreach-loop into a for-loop, the opposite ForEach to
For refactoring exists:

Which results in the equal implementation of the loop but using a different loop type.

There are several differences between two loops that might be interesting and should be considered while choosing
the right loop type:

•	 The items of the collection or array cannot be modified inside the foreach-loop. The reason you
cannot remove or add elements inside a foreach-loop is that the looping mechanism requires that the state
is preserved. The runtime cannot verify if you removed or added an item that is to be looped over in a
subsequent iteration. The for-loop does not have such a restriction, because you have a full control over the
iteration algorithm.

•	 The speed of the loops iteration, which is critical in many applications. There are performance
factors related to the for-loop. A foreach-loop has at best equivalent performance in regular looping con-
ditions as the for-loop. The for-loop is often the fastest way to loop over a series of numbers as it does not
require allocations on the managed heap and is easy for the compiler to optimize. When it goes to loop
through, foreach-loop copies the current array to a new one for the operation. While for-loop doesn’t care of
that part.

Conclusion

If you are planning to create high-performance code that is not iterating collections, it is better to use the for-loop.
Even for collections, a foreach-loop is easier to read and understand, but it’s not that efficient as the for-loop. A
foreach-loop can be used when writing less important parts of a program, as it reduces the complexity of the notation,
but choose the for-loop for ‘hot’ loops as a precaution, and use the specific loop converting automated refactorings for
this task.

Refactoring using statements

As many of you know, the using statement is a good tool for managing types which will be accessing unmanaged
resources. The using statement provides a simple and convenient syntax that ensures that objects that implement the
IDisposable interface are correctly disposed.

If the object is not disposed, CodeRush highlights the undisposed variables with the “Undisposed local” code issue:

482

To fix this, you can apply the automatic fix – the Introduce Using Statement code provider:

The Introduce Using Statement code provider declares a using statement for the specified IDisposable implementer,
removing the call to Dispose() if it exists. The code provider automatically detects and covers the required code into
the using statement if applied on an undisposed variable, for example:

The refactoring preview hint helps you to see the refactored code, and the resulting code before applying it. If you
wish to extend the code that must be placed inside the using statement, manually select it (including all required
code):

483

Instead of the using statement, you can call the object’s Dispose method to indicate that you want the object to clean
up its resources. However, in this case, you must make sure that the Dispose() call will always be executed by wrap-
ping the entire code into the try/finally block. To do that, you can apply anotherrefactoring that converts the selected
using statement into a try/finally block – the Using to Try/Finally refactoring:

The result of the refactoring:

484

The Dispose() method will be called in the finally block even if an exception has been thrown during processing.
But note that the scope of the variable is now changed. When the variable is declared inside of the using statement
expression, the scope of the variable is the using statement and it is not visible outside of one. But after the statement
is converted into a try/finally block, the scope of the variable will be increased, so it is visible to both try and finally
blocks and the rest of the method (or parent block). This leads to the possibility that the object may be accidentally
used again after control leaves the finally block even though the object probably no longer has access to its unman-
aged resources. In other words, the object will no longer be fully initialized, and may cause an exception to be thrown
if it is accessed. The Introduce Using Statement can fix this by converting try/finally block back to the using state-
ment, so that the variable will remain in the scope of the using statement.

Both refactoring and code provider are the opposite of each other. You can refactor and improve the old code that uses
the try/finally block or do the opposite – create a try/finally block for your advanced requirements.

The using statement may include multiple instances of the same type separated by a comma:

In this case these objects will both have the same scope. If you want to change the scope of one of the variables
and write additional code, you can apply the Split Using Statement refactoring. The refactoring breaks the multi-
declaration using statement into two or more neighboring using statements:

This refactoring has an opposite refactoring called the Consolidate Using Statements which combines several

485

neighboring or nested using statements that cover variables of the same type into a single using statement:

All mentioned refactorings are available in both C# and Visual Basic languages if the specific language version sup-
ports the using statement.

Lock to Try/Finally

Locking is essential in programs with multi-threading. It restricts code from being executed by more than one thread
at the same time. The lock statement gets the exclusive monitor for an object and ensures that no other thread can
access the object until the lock is released.

The lock statement automatically generates exception safe code, and in fact it is a syntactic shortcut for a call to the
methods Monitor.Enter(obj) and Monitor.Exit(obj) with a try/finally block. However, if the thread is aborted after the
lock is acquired but before entering the try block, the lock will not be released. Also, bear in mind that the Monitor.
Enter() waits to acquire the lock forever which may introduce a possible deadlock condition.

To avoid these issues with the lock statement, it is better either to use different overloads of the Monitor.Enter() call
which take additional arguments, such as amount of time or a number of milliseconds to wait while trying to obtain
a lock, or use the Monitor.TryEnter() call which lets you specify a timeout for an operation. But before you can use
any of these workarounds, you need to convert the lock statement into its equivalent code. The Lock to Try/Final-
ly refactoring can help you to automate this task.

The refactoring produces the following result once it is applied:

Now you can modify the code as required, for instance:

486

This code does not have issues as with the lock statement mentioned above.

Introduce ForEach Action

It is a rather trivial task to iterate over each item of the generic List using a foreach-loop as follows:

However, you might be aware that the generic list has its own ForEach method which performs the specified opera-
tion (Action) on each element of the list:

So, what’s the difference between these two methods of iterating list items? Let’s find out.

The first difference is that the foreach-loop does not allow you to modify the state by adding or removing items while
iterating over the collection. But with the List.ForEach call you can modify the underlying collection without ques-
tions asked, where as with the foreach syntax, you’ll get an exception if you do that.

The second difference is about performance. Let’s compare the standard foreach-loop and the ForEach call on the
generic list with the following block of code:

To convert this code into a ForEach call, the Introduce ForEach Action refactoring can be used:

487

that will produce the required code automatically once applied:

Now, we can test both list-iteration methods in a test application with a different number of iterations. I got the fol-
lowing results on my machine (Core2 Duo T7250 @2.00Ghz, 3.00Gb RAM):

Number of iterations foreach-loop List<int>.ForEach
1,000 0.000021 0.000015
5,000 0.000082 0.000049
10,000 0.000156 0.000094
50,000 0.000786 0.000510
100,000 0.001551 0.000889
500,000 0.007299 0.004454
1,000,000 0.014920 0.008751
5,000,000 0.072565 0.043666
10,000,000 0.145069 0.087591

According to this result, it turns out that the ForEach call is much faster than the default foreach-loop. However, this
result is taken without the ‘Optimize code’ build option set. If we turn it on, we will get the following result:

iterations foreach-loop List<int>.ForEach
1,000 0.000016 0.000013
5,000 0.000062 0.000045
10,000 0.000119 0.000084
50,000 0.000555 0.000322
100,000 0.001113 0.000790
500,000 0.005541 0.003921
1,000,000 0.011354 0.007964
5,000,000 0.055643 0.038843
10,000,000 0.112101 0.078943

488

If we compare two results, we see that the foreach-loop gets optimized in about 23%, but the ForEach does not
receive as much optimization. However, the ForEach call is still faster than the foreach-loop, whether the code is opti-
mized or not. Let’s take a look at the picture illustrating the results:

So, the ForEach might be preferred in performance critical code blocks. If you’d like to convert the existing foreach-
loop iterating over the generic list, consider using the Introduce ForEach Action refactoring which will convert the
foreach-loop quickly.

Refactoring Visual Basic With statements

The With statement (in Visual Basic) is used to execute a series of statements of the particular object without requali-
fying the name of the object. In other words, we can use the With statement to reduce the number of times we needed
to manually type the full path to the target object. For example, this function inverts the background color of the
active control of the active form in the current Windows application:

Using the With statement in this code will look as follows:

489

Inlining the temporary variables will yield into the following code:

Given the choice of creating a With statement for use with an object or a standard initialization, it is recommended
to choose the With statement over the usual initialization because it can improve performance and your code will be
more efficient. If your code has repeated invocations of a property or a method, the With statement will create a local
variable and assign it to the object that you used as an expression of the With statement, so the method or property
will only be called once instead of several times on each invocation.

DevExpress Refactor! Pro and CodeRush Xpress has several automatic refactoring operations that allow you to ma -
nipulate a With statement without manual code retyping:

Create With Statement

This refactoring creates a With statement for the selected object from the selected code. For example, you can apply
the Create With Statement on the code above to automatically create a With statement:

It allows you to choose one of the appropriate objects if there are several objects available. The chosen object will be
used as an expression of the With statement.

Inline With Statement

This refactoring is the opposite of the Create With Statement refactoring. It allows you to inline the expression of
the With statement back into the source code:

490

It is useful when you want to change the object that is used as the expression of the existing With statement and recre-
ate a With statement that will use a different object.

Split With Statement

This refactoring allows you to automatically split the With statement into two With statements. This is useful when
you need to access properties of a parent object that is used inside the expression of the With statement. One With
statement will be nested in the other one, for example:

Once this refactoring is executed, you can access properties of the parent object as well:

491

Refactoring C++ macros

CodeRush Pro includes three refactorings that work with macros, aliases and typedef declarations in C++. Here they
are:

Inline Macro

A macro is a fragment of code which has been given a name. Whenever the name is used, it is replaced with the
contents of the macro by the preprocessor when an application is being compiled. To replace the current macro with
its definition in the source code, the Inline Macro refactoring can be used. If the current macro contains other nested
macros in its definition, all macros are inlined:

The refactoring available for all types of macros: object-like macros that resemble data objects when used, and func-
tion-like macros that resemble function calls.

Use Const

The Use Const refactoring converts an object-like macro that defines a simple identifier with a value into a const
declaration:

A constant declaration is useful for parameters which are used in the application but are do not need to be modified
after the application is compiled. It has an advantage over the macros in that it is understood and used by the compiler
itself. In other words, it is not substituted into the source code by the preprocessor before reaching the compiler as a
macro definition, so error messages might be more helpful when using const declarations.

Use typedef

The Use typedef refactoring converts an object-like macro that defines a built-in data type or an existing class that is

492

either provided by one f the libraries or defined in the code into a typedef declaration:

You can use typedef declarations to construct shorter or more meaningful names for types already defined by the
language or for types that you have declared, e.g.:

Typedef names allow you to encapsulate implementation details that may change and make your code easier to modi-
fy, and more understandable.

Refactorings for moving and extracting methods

Extract Method

The Extract Method refactoring creates a new method from the selected code block. The selection is replaced with
appropriate calling code to invoke the newly-declared method. The Extract Method is great when you need to turn
a big, complex method into smaller, simpler ones. Small methods are much easier to maintain, and encourage code
reuse, and also have the following advantages:

•	 It increases the chance that other methods can use a simple method when the method is finely
organized and well-formed.

•	 It allows the higher-level methods to read more like a series of comments, which improves the
code readability. Simple methods with good names comment themselves, and improve overall code clarity.
Overriding also is easier when the methods are finely grained.

Opposite:

The opposite of this refactoring is the Inline Method refactoring.

Sample:

493

Result:

Calling side:

494

Notes:

•	 You can choose the newly declared method’s location using the target picker (see Op-
tions below).

•	 Right after Extract Method has completed, Rename is automatically enabled for all the
extracted method’s parameters so you can easily give them appropriate names.

•	 Local variables used in the extracted code block are automatically passed to the newly created
method as parameters.

•	 If a variable hasn’t been assigned before the extracted block and is modified within this block and
used after the block, it is passed to the extracted method as an out parameter.

•	 If a variable has been assigned before the extracted block, is modified within this block and is
used after the block in the source method, it is passed as ref parameter.

•	 The extracted method can be organized as a Function instead of Sub in Visual Basic (or as a
function rather than a void procedure in C#) if there are out parameters. See Options for more information.

•	 If the source method is a function and the extracted code block contains return statements that
return this function’s value, the extracted method is also organized as a function having the same return
value as the source function.

•	 If the extracted code block is an expression, the extracted method will be a function with the
appropriate return value type.

•	 If the source method is a Sub in Visual Basic (or void function in C#) and the extracted code
block contains return statements, then the extracted method includes an additional out parameter that
indicates whether the source function should return after the extracted function call. The appropriate code is
inserted into the source function automatically.

495

Tips:

•	 If the extracted method’s return value is assigned to a variable that is referred but not changed
later, you can use Inline Temp to replace all variable occurrences with the extracted method call. This will
eliminate a redundant local variable.

•	 If the extracted method contains an out parameter that you want to make the method’s return
value, use the Reorder Parameters refactoring to move the out parameter left until it becomes the return
value.

Options:

•	 You can choose whether the extracted method should be located before or after the source method
or property or whether its position should be specified manually by using the target picker.

•	 You can choose whether the extracted method should be a Function instead of a Sub in Visual
Basic (function instead of a void procedure in C#) to become available only when you have a single out
parameter, or available when you have multiple out parameters.

•	 If you’ve chosen to generate functions when multiple out parameters are available, you can
choose which parameter should be the function’s default return value – the first parameter receiving an
assignment, the last parameter receiving an assignment, the first out parameter declared or the last out
parameter declared.

•	 You can choose whether the Extract Method should be available for code blocks that contain
return statements. If so, you can set the name for the variable holding the return flag.

•	 You can enable or disable the Intelligent Paste option that allows you to cut code blocks and paste
them inside a class or struct automatically enabling Extract Method.

496

Inline Method

The Inline Method refactoring lets you move the method’s body into the body of its callers and remove the method
declaration, if needed. Inline Method is helpful when you have a group of methods that seem badly factored. You
can inline them all into one big method, and then re-extract the methods.

Another reason to use Inline Method is that sometimes you do come across a method in which the body is as clear as
the name. Or, you refactor the body of the code into something that is just as clear as the name. When this happens,
you should then get rid of the method.

There are two versions of this refactoring:

•	 Inline Method

•	 Inline Method (and delete)

The difference between the two is that the second one removes the source method, if appropriate.

The refactoring is available either on the source method name or the calling side.

Opposite

The opposite of this refactoring is the Extract Method refactoring.

Source sample code

Refactoring preview

497

Result

Moving methods to source file and back to the header

There are two refactorings specific to the C++ language:

•	 Move Method to Source File

•	 Move Method to Header

The first one moves a method from a source file into the class declaration that is inside the header file. The second
one moves the method’s implementation to a source file leaving the declaration in the header file. Having these refac-
torings makes it much easier to move method bodies between the header and source files.

Here are some simple samples:

Result:

And vice versa:

498

Refactorings for simplifying of parallel computing development

Many personal computers and workstations have two or four cores that enable multiple threads to be executed simul-
taneously. .Net Framework ver. 4.0 has been introduced a standardized and simplified way for creating robust, scal-
able and reliable multi-threaded applications. The parallel programming extension of .NET 4.0 allows the developer
to create applications that exploit the power of multi-core and multi-processor computers. The flexible thread APIs of
the extension are much simpler to use and more powerful than standard .NET threads.

The extension implements the concept of automatic dynamic parallelization of applications. It provides both ease-of-
use and scalability in development of parallel programs. The concept is naturally integrated into .NET Framework by
means of templatized classes (introduced in C# with generics) that encapsulate all low-level details such as thread-
ing, synchronization, scheduling, load balancing, etc., which makes the extension a powerful tool for implementing
high-performance parallel applications.

Refactor! Pro provides several parallel computing refactorings that can help you to parallelize your code to distribute
work across multiple processors. Here they are:

•	 Convert to Parallel

Converts the code to run in parallel.

•	 Execute Statements in Parallel

Executes the selected independent statements in parallel.

•	 Execute Statements in Serial

Moves the child statements out from the Parallel.Invoke call and executes them serially.

•	 Execute Statements Asynchronously (FromAsync)

Passes the appropriate BeginXXX and EndXXX methods (corresponding to this statement) to the FromAsync method
of Task.Factory, launching an asynchronous operation and returning a handle to the associated Task.

•	 Execute Statements Asynchronously (StartNew)

499

Passes the current statement to the StartNew method of Task.Factory, launching an asynchronous operation and
returning a handle to the associated Task.

All refactorings work in both CSharp and Visual Basic languages. In this article we will review the first three
refactorings, and see how they help to speed-up the code in a real sample. There are several parallel programming
methods we are going to use:

•	 Parallel.For

•	 AsParallel

•	 Parallel.Invoke

•	 and a standard serial calculation method to compare with.

Consider that we have the function that determines whether the specified number is prime:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

public class Prime

{

 /// <summary>

 /// Determines whether the specified number is prime.

 /// </summary>

 /// <param name=»number»>The number.</param>

 /// <returns>

 /// true if the specified number is prime; otherwise, false.

 /// </returns>

 public static bool IsPrime(int number)

 {

 for (int d = 2; d <= number / 2; d++)

 {

 if (number % d == 0)

 return false;

 }

 return number > 1;

 }

}

500

And the standard function that returns the list of primes in the specified limit:

01

02

03

04

05

06

07

08

09

10

11

12

static List Find(int limit)

{

 var result = new List();

 for (int i = 2; i < limit; i++)

 {

 if (Prime.IsPrime(i))

 result.Add(i);

 }

 return result;

}

Using the System.Diagnostics.Stopwatch class, we will count how much time it takes for finding all primes within the
limit. The limit will be 300000:

1

2

3

4

5

6

7

8

static void Main(string[] args)

{

 Stopwatch stopwatch = Stopwatch.StartNew();

 Find(300000);

 stopwatch.Stop();

 Console.WriteLine(«Time passed: « +

 stopwatch.ElapsedMilliseconds + « ms.»);

}
The result of the standard code run is 18328 ms. Average CPU usage is 52%. Here’s the CPU usage history of the
Intel(R) Core(TM)2 DUO CPU:

501

Now, let’s use the Convert to Parallel refactoring and improve the code:

The result of the Parallel.For code run is 9727 ms. Average CPU usage is %100. CPU usage history:

Let’s change the Find method to use LINQ instead:

1

2

3

4

5

6

7

static List FindLINQ(int limit)

{

 IEnumerable numbers = Enumerable.Range(2, limit - 1);

 return (from n in numbers

 where Prime.IsPrime(n)

 select n).ToList();

}

Result time: 19555 ms. Average CPU usage: 100%. CPU usage history:

502

Once again, using the same Convert to Parallel refactoring change the code:

Result time: 10111 ms. Average CPU usage: 100%. CPU usage history:

Now let’s use the Parallel.Invoke method. To use this method, we’ll split the limited number into 10 parts and make
calculation in parallel. An additional helper method is needed in this case:

1

2

3

4

5

6

7

8

static void CheckRange(List result, int n, int limit, int factor)

{

 for (int i = n * (limit / factor); i < (n + 1) * (limit / factor); i++)

 {

 if (Prime.IsPrime(i))

 result.Add(i);

 }

}

503

The standard code will look like this:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

static List FindRange(int limit)

{

 var result = new List();

 CheckRange(result, 0, limit, 10);

 CheckRange(result, 1, limit, 10);

 CheckRange(result, 2, limit, 10);

 CheckRange(result, 3, limit, 10);

 CheckRange(result, 4, limit, 10);

 CheckRange(result, 5, limit, 10);

 CheckRange(result, 6, limit, 10);

 CheckRange(result, 7, limit, 10);

 CheckRange(result, 8, limit, 10);

 CheckRange(result, 9, limit, 10);

 return result;

}

Result time without parallel optimization: 17816 ms. CPU usage: 52%. CPU usage history:

Now, use the Execute Statements in Parallel refactoring: The Parallel.Invoke method takes an array of delegates as
an argument. The new code will look like this:

504

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

static List FindRangeParallel(int limit)

{

 var result = new List();

 Parallel.Invoke(

 () => CheckRange(result, 0, limit, 10),

 () => CheckRange(result, 1, limit, 10),

 () => CheckRange(result, 2, limit, 10),

 () => CheckRange(result, 3, limit, 10),

 () => CheckRange(result, 4, limit, 10),

 () => CheckRange(result, 5, limit, 10),

 () => CheckRange(result, 6, limit, 10),

 () => CheckRange(result, 7, limit, 10),

 () => CheckRange(result, 8, limit, 10),

 () => CheckRange(result, 9, limit, 10));

 return result;

}

Result time: 10530 ms. CPU usage: 100%. CPU usage history:

The Execute Statements in Serial refactoring is an the opposite of the Execute Statements in Parallel, which
moves all code from the Parallel.Invoke call and executes it as usual (serially).

Here’s the comparison chart of the different parallel methods used in comparison to the standard serial methods:

505

Time chart:

As you can see, using parallel computing almost doubles the speed of the code, even when the number of calculations
is small. Parallel refactorings from Refactor! Pro make it easy to improve the speed of your code.

Refactorings to execute statements asynchronously

In continuing with the ‘Refactorings for simplifying of the .NET 4.0 parallel computing development‘ thread, let’s
review the additional refactoring for executing statements asynchronously called in the same manner – Execute
Statement Asynchronously. The refactoring is available in two versions:

•	 Execute Statement Asynchronously (FromAsync)

•	 Execute Statement Asynchronously (StartNew)

The FromAsync version of the refactoring launches an asynchronous operation passing a pair of the corresponding

506

BeginXxx and EndXxx methods of the selected statement to the FromAsync call of the Task.Factory. The FromAsync
call provides a convenient mechanism which uses the BeginXxx and EndXxx methods of the Asynchronous Program-
ming Model (APM) to create a Task.

The TaskFactory simplifies creation and startup of simple background tasks dramatically. For example, consider that
we have a Stream and a byte buffer, and we want to read from that stream into the buffer. Synchronously, we could do
the following:

The Execute Statement Asynchronously (FromAsync) refactoring will allow us to convert this code into the
FromAsync call:

resulting in the following one:

The FromAsync call returns a handle to the associated Task. The resulting Task object will, by default, be executed on
a thread pool thread. Combine this support with the ability to do Task.WaitAll, Task.WaitAny, Task.Factory.Contin-
ueWhenAll, and Task.Factory.ContinueWhenAny, and we can achieve a very useful synchronization functionality
having just a little code.

The second version of the refactoring (StartNew) launches an asynchronous operation by passing the current state-
ment to the StartNew method of Task.Factory. For instance, using StartNew is more efficient than creating and start-
ing tasks manually, because the StartNew method not only starts a new task but also applies the required synchroniza-

507

tion to the process. If you construct a task using the Task’s constructor, you then pay this synchronization cost when
calling the Start method, because you need to have protection against the chance that another thread is concurrently
calling Start. However, if we use the Task.Factory.StartNew, we know that the task will have already been scheduled
and started by the time we get the Task reference returned, which means that it is no longer possible for threads to
race to call Start, because every call to Start will fail. In the case of using StartNew, we can avoid the additional syn-
chronization and take a faster and easier approach for scheduling a Task.

The Execute Statement Asynchronously (StartNew) refactoring can be applied on any statement:

which will result in:

The difference between the StartNew and FromAsync methods is that using the latter for the things like Stream (i.e.,
when API offers the appropriate BeginXxx and EndXxx methods), you will actually end up using the async I/O un-
derneath the covers, e.g., I/O Completion Ports in Windows which provide an efficient threading model for process-
ing multiple asynchronous I/O requests on a multiprocessor system. The FromAsync method in this case provides the
best way to achieve I/O scalability, and is more efficient than blocking multiple CPU threads doing a synchronous
operation using the StartNew method.

Refactoring properties and fields

Refactorings specific to auto-implemented properties

Auto-implemented properties enable you to quickly specify a property without having to write logic for the property
accessors. The auto-property’s logic and the field serving as a backing store are automatically generated by the com-
piler. Such properties appeared in C# version 3.0 and Visual Basic version 10.0.

508

Refactor! Pro has several refactorings that allow you to convert “full” properties with a backing store field into
auto-implemented properties and vice versa. They are Convert to Auto-implemented Property and Create Backing
Store.

The Convert to Auto-implemented Property refactoring is available for properties that encapsulate a private field
without additional logic inside accessors, for example:

01

02

03

04

05

06

07

08

09

10

11

12

private int _Name;

public int Name

{

 get

 {

 return _Name;

 }

 set

 {

 _Name = value;

 }

}
The refactoring is available here showing you a preview hint of the resulting code:

After the refactoring is executed, you get a simple auto-implemented property:

509

1 public string Name { get; set; }
The refactoring performs the following actions automatically:

•	 removes the backing store field for the property;

•	 replaces the original property with an auto-implemented property;

•	 replaces all field references to references to the new property;

There’s a second version of the refactoring called Convert to Auto-implemented Property (convert all) which does
absolutely the same actions, but for all properties in the current type declaration that can to be converted into auto-
properties.

The opposite refactoring, called Create Backing Store, converts an auto-implemented property into a full property
with a field serving as a backing store. This can be useful if you’d like to add additional logic for one of the property’s
accessors. Or, if you’re going to prevent an auto-implemented property from being serialized, because auto-properties
don’t support the [NonSerializable] attribute.

Here’s a sample preview hint of the Create Backing Store refactoring:

Encapsulation refactorings

As we know, Encapsulation is an important object-oriented programming concept. It is also known as a data hiding
mechanism. Encapsulation enables a group of properties, methods and other members to be considered a single unit
or object. The idea of encapsulation is that an object’s internal data should not be directly accessible from an object
instance. With correct encapsulation, a developer does not need to understand how the class actually operates in order
to communicate with it via its publicly available methods and properties.

CodeRush has several refactorings that allow you to encapsulate fields and its members easily. They are:

•	 Encapsulate Field

•	 Encapsulate Field (read-only)

•	 Encapsulate Method

510

•	 Encapsulate Property

•	 Encapsulate Event

The Encapsulate Field refactoring encapsulates a field into a read-write property and replaces all occurrences of
this field with the newly declared property. If a field is non-private, the refactoring will change it into a private field
(encapsulation). The new property is given the same visibility as the original field (e.g., public, internal, etc.).

Apply the refactoring to an active field to encapsulate it:

You can choose the target location of the property with the help of a target picker:

511

The resulting property looks like this:

The second Encapsulate Field (read-only) refactoring is absolutely the same as Encapsulate Field, but creates a
read-only property without writing access:

The other refactorings are also available on a field. They allow you to encapsulate a property, a method or an event of
a field. These refactorings create new accessing members to members of an instance of a field.

Consider we have the following field declaration:

These refactorings allows you to choose which member you would like to encapsulate. For instance, the Encapsulate
Method refactoring:

512

The refactoring will produce the corresponding code once applied:

Here is the result of Encapsulate Property for the AutoReset property:

513

And finally, the result of the Encapsulate Event for the XXX event:

All refactorings allow you to choose the target location and drop a marker to easily move back at the original location
where the refactoring was applied.

Refactoring strings

Concatenating and splitting strings

Concatenation is the process of appending one string to the end of another string. A string is basically a sequence of
Unicode characters. An important property of strings is that they are read-only (immutable). Once a string has been
created, it cannot be changed. So, when a string is updated, the .NET framework actually discards the original string
and creates a new string. In other words, the concatenation of strings is creating an entirely new string, allocating
enough memory for everything, copying all the data from the existing values of all concatenated strings and then
copying the data from each string. As the string grows, the amount of data it has to copy each time grows too. Having
already concatenated strings allows you to avoid such problems.

DevExpress Refactor! Pro has a simple refactoring to combine strings called Concatenate Strings. This refactoring
concatenates all selected strings into a single string. Here’s its preview hint for the selected strings:

514

When concatenating verbatim and non-verbatim strings, they are combined into a common format depending on the
type of a first string. If the first string is verbatim, then the resulting string will be also verbatim, otherwise not.

The opposite of this refactoring is the Split String refactoring. This refactoring is also very simple. It can break the
active string into two or three pieces depending on the editor caret position and the selection state. If you select a part
of a string, this part will be extracted into a new string and combined with two other start and end parts:

If there’s no string selection, only two parts are produced by breaking the string into two pieces:

The refactoring may be useful for localization purposes, especially if some part of a string is already localized, but the
other one is not yet localized. Here, you can split the string:

515

and replace its parts to localized versions:

Bear in mind that if the editor caret is positioned at an unbreakable sequence of characters, such as a string format
item (e.g. “{0}”), an escape character (e.g. “\r”, “\n”), a unicode character code (e.g. “\uFFFF”), or the editor caret is
at the very beginning or an end of a string, the refactoring will not be available in these cases.

Also, refer to other refactorings that work with strings.

String.Format-specific refactorings

Refactor! Pro provides several refactorings to create and organize the .NET String.Format call. The String.Format call
is a static method that receives a string that specifies where the following arguments should be inserted, and how they
should be formatted. You can specify the display options for each argument individually using the String.Format call.

These refactorings are:

•	 Use String.Format

•	 Introduce Format Item

•	 Inline Format Item

•	 Remove Redundant Call

The Use String.Format refactoring converts a composed string expression into a single String.Format call. This
refactoring makes string concatenations much more readable and less error prone. It also makes it much easier to
update your string, prepare its arguments for localization and add more parameters to it. However, on the other hand,
the String.Format call may decrease performance a bit.

Imagine the following code:

Before you apply the refactoring, you can see the resulting code (click the image to enlarge):

516

After we apply the Use String.Format refactoring, we will get the following code:

This seems to be much more readable…

The Introduce Format Item refactoring adds a new format item to the string (e.g., “{1}” ,“{0}”, etc.) which
represents the selected text, and if necessary creates a new String.Format call to surround the string. The selected
text is extracted to become an argument to the String.Format call and an argument placeholder is left in the format
string. To apply the refactoring, select a part of a string that you would like to use as an argument to the String.Format
call. Here is the sample:

The Inline Format Item refactoring is the opposite of the Introduce Format Item. It inlines an existing String.
Format argument into the text string, replacing the format item (e.g., “{0}”, “{1}”, etc.) , and creating a concatenated
string, if necessary:

517

This refactoring will remove the call to String.Format if it is applied in the last remaining argument:

A part of the Remove Redundant Call refactoring functionality allows you to remove the redundant String.Format
call with a single string parameter:

As always, the preview hint in every refactoring will show you the resulting code before you apply it. This allows you
to see what code will be produced after the refactoring is performed.

Also, refer to other refactorings that work with strings.

Use StringBuilder

In addition to the refactorings that work with the concatenated strings and the String.Format call, there is another
useful refactoring called Use StringBuilder. This refactoring replaces the string concatenation operations with corre-
sponding methods of the StringBuilder class.

Using the StringBuilder class may improve the performance of the string concatenation operations. The performance
of these operations depends on how often a memory allocation occurs. A usual string concatenation operation always
allocates memory, and a StringBuilder concatenation operation , on the other hand, only allocates memory if the size
of the StringBuilder object’s buffer is not enough to store the new data. This means that the String class is preferable
for the concatenation operation of a fixed number of strings. In that case, the individual concatenation operations

518

might even be combined into a single operation by the compiler. A StringBuilder object is preferable for a concatena-
tion operation if an arbitrary number of strings are concatenated. For example, when you don’t have a loop, generally
you should avoid StringBuilder. There is a lot of logic in the StringBuilder class that will be slow on small string
operations and it can make your code more cumbersome.

However, there is another benefit of using the StringBuilder class in regard to the memory consumption. The more
temporary objects created, the more often the .NET Garbage Collector runs. The StringBuilder class creates fewer
temporary objects than the usual string concatenation operations, and therefore adds less memory pressure.

The Use StringBuilder refactoring uses the appropriate Append, Insert, AppendFormat calls of the StringBuilder
class when it is applied on a selected piece of strings concatenations code. It can also recreate an instance of the
StringBuilder, if necessary. For example, consider the following code:

This method formats a new system audit message initializing it to an initial message, adding a new caption and
additional data, such as a user name, operation name and the time taken by an operation. The code can be optimized
to use the StringBuilder class. To apply it, select the string operations and the string declaration you would like to
convert (you will see the preview hint of the resulting code changes):

519

The resulting code will look like this:

If you select a part of the code like this:

520

You will get the corresponding code for the selected block of code:

This code is much easier to read and maintain. It will perform much faster, especially if the data array passed to the
method has many items.

Also, refer to other refactorings that work with strings.

521

Use String.Compare

The Use String.Compare refactoring shipped in DevExpress Refactor! Pro allows you to convert a usual string
equality comparison (==) into a more flexible Compare call on the System.String class. Consider the following code:

The refactoring will show you resulting code preview hint:

The created String.Compare compares two specified string objects, taking into account their case by passing the
boolean “false” as an argument (IgnoreCase), and returns an integer that indicates their relative position in the sort
order, indicating whether one string is ordered before another in alphabetical order, or whether it is ordered after or is
equivalent.

You can also modify the String.Compare call to take a StringComparison enumeration argument which lets you
specify culture-insensitive or case-insensitive comparisons. Only String.Compare call allows you to specify a
CultureInfo and perform comparisons using a culture other than the default (current) culture. This argument not only
allows you to define the exact comparison behavior you intended, but also makes your code more readable for other
developers:

Also, refer to other refactorings that work with strings.

Use IsNullOrEmpty

When checking that a user has provided a valid input, you will often want to ensure that it is not null or empty.
Strings are reference types and can be equal to a null value like any other reference type. Strings can also be empty,
meaning their values equal “” and they have zero length. The IsNullOrEmpty call of the System.String class indicates
whether the given string is a null or an empty (“”) string. Before this call appeared in the .NET Framework, we were
checking strings as follows (for example):

522

This code checks the userName, password and domainName strings that are null and uses different checks for the
string contents. All these checks can be replaced with the corresponding IsNullOrEmpty call in by applying the Use
IsNullOrEmpty refactoring. The Use IsNullOrEmpty refactoring shipped inDevExpress Refactor! Pro allows you
to convert the string checking code into the appropriate call in a single step:

The result produced is now much more readable:

If you don’t want to replace all checks, you can select those to be converted:

Only selected checks will be replaced by the refactoring:

The refactoring requires both checks (for null and empty) to occur at once. Strings can be either equal to the null liter-
al, meaning they don’t reference any data, or empty, meaning they reference a character buffer that is zero characters
long. IsNullOrEmpty call detects both of these conditions at the same time.

523

However, this refactoring also has a second version that does not require thes both conditions simultaneously. This
version is implemented as a code provider operation which may change the program behavior. The Use IsNullO-
rEmpty code provider allows you to replace one of the checks to theString.IsNullOrEmpty call:

Use this code provider when you are sure that you need both checks made for a string, otherwise it may change the
logic of the code – e.g. when you cannot have a null string value, but you can have an empty string value.

Also, refer to other refactorings that work with strings.

Use Environment.NewLine

The Use Environment.NewLine refactoring is one of the simplest refactoring shipped in DevExpress Refactor!
Pro which improves code portability. This refactoring replaces the “\r\n” string with the value of the Environment.
NewLine property reference. The Environment.NewLine is a static string property from the System namespace that
is tied to the current executing environment (platform). It returns a valid “line feed/carriage return” string that
corresponds to the current operating system, for example: “\r\n” for Windows platforms, or a string containing just a
line feed (“\n“) for Unix platforms.

You may use this refactoring to improve the portability of the code and readability. Consider the following code:

Applying this refactoring will help you replace all “\r\n” occurrences:

524

Resulting code:

Note if you have CodeRush Pro installed and the Code Issues feature turned on, you will see the special highlighting
for the cases where the Use Environment.NewLine refactoring can be applied:

To learn more about the “Environment.NewLine can be used” code issue, please read the appropriate topic.

Also, refer to other refactorings that work with strings.

Refactorings for types and type casting

Introduce Alias

The Introduce Alias refactoring creates an identifier that serves as an alias for a namespace or type within the active
source file. The alias directive can provide much neater and organized code. When several namespaces contain a
matching class name, alias can also help to avoid a name conflict (ambiguous reference) without using the fully quali-
fied type names, which improves overall code readability.

The refactoring allows you to choose whether to create a namespace or type alias via a sub menu. There are two
variations of this refactoring – a simple Introduce Alias which creates an alias for the current type or namespace

525

reference, and the Introduce Alias (replace all), which replaces all occurrences of the type or namespace reference in
the entire source file.

Once refactoring is performed, you can rename the newly created alias, because names of the alias references are
linked together. When you are done with renaming, simply press the Enter key to commit your change:

CSharp:

Visual Basic:

The opposite refactorings are Inline Alias and Replace with Alias.

Move Type to File

The Move Type To File refactoring allows users to move a given class, structure, interface, enumeration or delegate
to a separate file. It is available when there are two or more types in the current source file.

Refactoring moves a type with a name that differs from the file name to a new source file. All comments, attributes,
and XML doc comments relating to the type are moved with the type. The file will be located in the same folder as
the current file and automatically added to the project. The name of the new file is based on the type’s name on which
refactoring is applied.

To perform the Move Type to File refactoring, place the editor caret at the type name, or a visibility keyword if
specified. If visibility keyword is not specified than the first keyword range is used instead (e.g. ‘class’ (CSharp) or
‘Class’ (Visual Basic)).

After refactoring is executed, all namespace references in the new source file are automatically optimized, i.e. all
unused namespace references are removed using the existing Optimize Namspace References refactoring.

Optimize Namespace References

The Optimize Namespace References refactoring removes namespace references (usings (in C#) or Imports (in
VB)) that are not needed in the active source file, either because they were added automatically and not used, or
because the code that did require them has been removed or relocated. Also, it can automatically sort used references
after refactoring is performed: alphabetically, by length or not sort. An additional sorting option is to move all Sys-
tem references at the top of the list (file). The refactoring improves code readability.

On the other hand, Visual Studio already has a similar built-in feature called Organize Using Statements, available via
right-clicking the context menu in the code editor. The “Organize Usings” feature provides a way to sort and remove
using and alias declarations.

Let’s compare these two features: Refactor! Optimize Namespace References and Visual Studio Organize Usings:

VS Organize Usings Optimize Namespace References

References sorting

Sorting methods Alphabetically, Place ‘System’ direc-
tives first when sorting usings

Alphabetically, By Length, Move System
References at the top

526

Aliases support (Partially – unused aliases are removed,
but not sorted)

Option to leave favorite
references

 (*)

Languages support C# (For VB support you may in-
stall Productivity Power Tools)

C#, VB, C++

Visual Studio support VS2008 and up VS2005 and up
Works across solution (Macros can be written as a work-

around)
 (DXCore plug-in can be written as a work-

around)
(*) This option is available since release 11.1.

The Optimize Namespace References refactoring is shipped in Refactor! Pro. It has a preview hint as most of other
refactorings, so you are able to see what references are going to be removed:

The sorting method and the list of references to keep is configurable on the Optimize Namespace Reference options
page (in the “Editor | Refactoring” category) in the IDE Tools Options Dialog:

527

To sort namespace references without optimizing them, you are able to use the stand-alone Sort Namespace Referenc-
es refactoring, which allows you to choose the sorting algorithm right in the Popup menu instead of options page.

Sort Namespace References

The Sort Namespace References refactoring is a stand-alone part of the Optimize Namespace
References refactoring. In contrast to that refactoring, the Sort Namespace References refactoring doesn’t remove
any references, and as the name says, it just sorts the ‘using’s (C#) or ‘Imports’ (VB) statements in the active source
file.

The following sorting methods are available:

•	 Alphabetically

•	 By Length

These sorting methods are available only if the namespace references are not yet been sorted by any type of sorting:

528

The result of ‘By Length’ sorting:

Refactoring visibilities

Reduce Visibility

Each member of a type declaration has an associated visibility (accessibility) modifier, which controls the access to
this member for other members. The Reduce Visibility refactoring shipped in Refactor! Pro allows you to quickly
reduce the visibility of a member to match the highest calling visibility, in other words, to restrict the visibility as
much as possible.

For example, if a member is called only inside the current class and not outside of it, a member can have the ‘private’
visibility. If a member is called from only descendants of the current class, it may have the ‘protected’ visibility.

The refactoring is available on the visibility keyword:

529

Reducing the visibility may improve the clarity of your API.

Variable scope widening (Widen Scope)

The scope of a variable declaration determines its visibility to the rest of a program. Scopes can be member-level,
class-level and nested, where an inner scope may re-declare the meaning of a variable from an outer scope.

When declared inside a member, the scope of the variable is the entire member after the variable declaration, includ-
ing all nested code blocks. This means that the variable is available to use within the member but when control passes
to another member, the variable is unavailable.

A variable can also be declared within a code block. In this case, a variable will only be visible to the code within the
block and not available outside of this code block. Code blocks can be nested. For example, a loop within a method
within a class provides three levels of nested code blocks and therefore, three levels of nested scope. When a variable
is declared within one of these nested scopes, it is visible only to the current scope and any scopes nested within
it. This means that a variable declared within a loop is not visible outside of that loop, whereas a variable declared
outside of the loop is also visible within the loop.

A wider scoped variable could be declared at the class-level, so that it can be used by any member within the class. In
fact, a variable’s scope is always the full extent of the code block it is declared within.

When you want to widen the scope of the variable, you can perform the Widen Scope refactoring to do this
automatically. This refactoring moves the variable declaration outside the current scope block. If a variable is
initialized with some value, the refactoring automatically determines whether to move the initialization value with the
declaration or leave it at the source position:

530

After it is executed, a navigation marker is dropped at the starting position, so you can navigate back by pressing Esc:

There is an option for this refactoring which specifies whether to increase the scope by one level, or always promote a
variable to the maximum visibility (e.g. top of a method). The option is available in the Editor | Refactoring | Widen
Scope options page in the CodeRush Options Dialog.

There are two additional modifications of the Widen Scope refactoring:

•	 Widen Scope (promote to field) – converts a local variable to a field variable. In other words,
this refactoring moves a variable to the top class-level scope:

The field variable will be declared with the name corresponding to your Identifiers options and all references to it will

531

be linked together:

•	 Widen Scope (promote constant) – moves a local constant to a class-level scope and replaces all
similar constant values with the reference to a constant:

Once applied, you will be able to replace all similar expressions from the class to the reference on the newly created
constant:

When all expressions are replaced, they are linked together as well:

532

This refactoring is useful when you want to introduce a class-level constant for all similar expressions of the current
class.

Various refactorings

Extract Interface

Extract Interface is a refactoring that provides an easy way to create a new interface with members that originate
from an existing class or struct.

When several clients use the same subset of members from a class or struct, or when multiple classes or structs have a
subset of members in common, it can be useful to embody the subset of members in an interface. The Extract Inter-
face will help to create the new interface for you. Just place the caret on the type name and perform a refactoring.

Extract Interface generates an interface above the type it is performed on, and makes the current type implement
this interface. A new interface name is automatically linked with the current type ancestor, so you can easily rename
the newly created interface. If you would like to move the new interface to its own file, use the Move Type to
File refactoring.

Sample:

533

Result interface:

The refactoring doesn’t have additional options.

Rename

This refactoring provides an easy way to rename identifiers for code symbols such as locals, type members, types or
namespaces and updating all their references.

534

Rename is one of the most useful refactorings of all. The developer can alter the name of the declaration and its
occurrences (references) in the code in the whole solution.

Simply put the caret on the identifier and apply the refactoring. The refactoring will wrap all references and name of
the declaration into linked identifiers, that help you easily change all occurrences simultaneously. The preview hint
in Rename will show visible references in the code editor. Press Enter when you are done changing the name of the
identifier to commit your changes.

There are a few options available for this refactoring in the Options Dialog:

•	 How the text selection should be changed when the Rename is performed on the identifier, and
no selection exist:

o Identifier will be entirely selected

o Nothing will ever be selected

535

o Smart selection – for example, the identifier will be completely selected in the specific
context (e.g. when the caret is at the start of the identifier or immediately left of a lower-case
character)

•	 Option whether to show the progress visualization hint of the references search:

Use Implicit Line Continuation

The Use Implicit Line Continuation is a Visual Basic language specific refactoring available in Visual Studio 2010
that removes redundant line-continuation underscore characters from an entire source file.

Visual Basic language version 10 has been improved in the area of line-continuation characters. Now, there are a lot
of places in the code where an underscore is not necessary anymore, which means that Visual Basic is smarter about
auto-detecting line continuation scenarios, and as a result, no longer expect you to explicitly indicate that the state-
ment continues on the next code line. For example, the underscore is no longer necessary in the following cases:

•	 After the following punctuators: comma ‘,’, open parenthesis ‘(‘, open curly brace ‘{‘, begin
embedded expression in XML ‘<%=’.

•	 Before the following punctuators: close parenthesis ‘)’, close curly brace ‘}’, end embedded
expression in XML ‘%>’.

•	 After an open angle bracket ‘<’ in an attribute context, before a close angle bracket ‘>’ in an attri-
bute context, and after a close angle bracket in a non-file-level attribute context.

•	 After binary operators in expression contexts.

•	 Before and after query expression operators.

•	 and others.

Consider the following code:

536

To apply the refactoring move the editor caret to one of the underscore characters in the code. Before applying
the Use Implicit Continuation refactoring, you can see the preview hint:

537

Once the refactoring is applied you will get the following result:

538

Note that a few underscores are left after the refactoring is performed, because they are actually needed in the code. If
you remove them, the code is no longer compilable.

539

540

Chapter 12. CodeRush extensibility

DXCore Framework plug-ins overview

The DXCore provides services, wizards, and a visual extensibility framework designed to make it easy to extend Vii-
sual Studio. All products like CodeRush and Refactor! Pro were designed upon DXCore for Visual Studio® .NET. In
the interest of encouraging developers to be pro-active about productivity,DevExpress is making available for general
download of DXCore framework so that developers can build their own productivity plug-ins to extend the Visual
Studio themselves using a simple visual framework for IDE extension. The DXCore is absolutely free for personal
use but it is not open source.

DXCore uses a plug-in based architecture and gives you the ability to create anything from tool windows (hosting
whatever code you want) to “Actions” (items which can be tied to keyboard shortcuts and context menus)
and refactorings, with an extremely rich context system, and a language agnostic code generation engine. It provides
a very nice abstraction layer on top of the Visual Studio. It is also written to be version agnostic, so plug-ins written
against DxCore will work for VS2008 2005 and up.

DXCore plug-ins architecture and design philosophy

A feature of IDE tools (CodeRush and/or Refactor! products) resides in DXCore plug-ins. A plug-in is special class
that resides in an assembly that is loaded into the Visual Studio environment when DXCore starts-up. While plug-
ins implement the high level solutions you see, they don’t do all the work. Each plug-in references a namespace in
the DXCore, which holds a powerful framework packed with low-level services and events.

The DXCore is loaded into Visual Studio as an Add-in for VS2005/VS2008 or as an Extension for VS2010.

Design Philosophy

The DXCore design philosophy is to keep the plug-in code simple. Complexity in a plug-in is a good indication that
its code needs to be pushed as a new service and/or API down into the core. This philosophy results in the following
benefits:

541

1. Client code (the plug-in’s code) is simple, and easy to understand

2. The DXCore is powerful and robust framework

3. That power of the DXCore is completely available to third-party plug-in authors

Nearly all the code in a plug-in is there to support the high-level feature, with a noticeable absence of busywork. The
code reflects the essence of the plug-in’s purpose.

Design Goals

Ease of extensibility has been one of DXCore top design goals from the beginning. So it’s no accident that the DX-
Core is the easiest way to extend Visual Studio IDE.

•	 Step-by-step Construction

Plug-in wizards create standard plug-ins, tool windows, and options pages. These wizards lay down the framework
upon which your plug-ins will grow.

•	 Visual Extensibility

DXCore plug-ins are descendants of .NET controls, having the properties and a rich collection of useful events. Just
drop these specialized controls onto your plug-in design surface, as needed. And because plug-ins are .NET controls,
you can use Visual Studio’s Property Inspector to change properties and create event handlers.

DXCore plug-in types and naming convention

DXCore has two types of plug-ins. They are “System” and “Ordinary” plug-ins. System plug-ins are located in the
similar “System” folder, and all other plug-ins (usual or user plug-ins) reside in the “PlugIns” folder. These folders
are located in the “Bin” folder of every product installed. The difference between “System” and ordinary plug-ins is
that the former are always loaded before all other plug-ins.

There’s a naming convention for plug-in assemblies that is recommended by IDE tools developers. This convention
consists of a specific prefix in the name of an assembly. Here are possible name prefixes:

Prefix Description
DX A DXCore system plug-in, such as “DX_CSharpLanguage.dll”.
CR A CodeRush plug-in with some specific features, for example, “CR_AdvancedSelections.dll”.
Refactor A Refactor! plug-in that contains a single or few of refactorings, e.g. “Refactor_ReorderParams.

dll”.
Code A CodeRush plug-in that contains code providers (similar to refactoring provider, but may change a

program behavior). An example of such an assembly is “Code_Declare.dll”.

That’s it. If you’re going to extend Visual Studio using the DXCore, it’s extremely easy to do. Just bear in mind,
that DXCore plug-ins are one of the most powerful extensions ever developed for Visual Studio IDE!

DXCore plug-ins overview

These are two primary types of plug-ins you can create:

1. Standard Plug-in

542

The standard plug-in is a workhorse of the extensibility landscape. It serves as a container for DXCore components,
such as actions, providers, and your custom event handlers.

•	 Tool Window

Tool windows are modeless forms that can be docked inside the Visual Studio IDE. The Solution Explorer, Toolbox,
and Property Browser are all examples of tool window plug-ins. Creating a tool window plug-in is easy. Just arrange
your components in the tool window designer, set a few properties, and compile the project.

You can also add some additional project items into your plug-in project:

•	 Additional Standard Plug-in or a Tool Window

•	 Options page

Custom pages participate in the Options Dialog. If your plug-in has any kind of user-configuration, this is a way to
go. Option pages offer a number of advantages over a custom roll-your-own approach.

A particular plug-in can be written in CSharp or Visual Basic languages only. Unfortunately, you can’t use
the C++ language to write a plug-in, because this language has diverged from the common wizard model in Visual
Studio (which other languages use), causing this support to be very non-trivial to add toDXCore.

How DXCore plug-ins are loaded

DXCore has a built-in Loader Engine, which is intended to improve the speed of its start-up process. However,
the first DXCore start-up process is pretty long (it may take a minute or two). There’s a reason that the first start-up
takes much more time then the subsequent launches. When DXCore loads for the first time, it has to load all of the
plug-ins found in both, “System” and “PlugIns” subfolders. At this time, DXCore profiles every loaded assembly:
checks its load type, loading time, so in brief, all important and necessary information that DXCore should know
about a particular assembly. All this information is saved to Loader profiles in an XML format. This information will
be used on every subsequent DXCore launch, so that Visual Studio should start instantly, because, in the first place,
plug-ins are loaded from profiles only after the splash screen goes away and, secondly, because Loader Engine has
optimizedDXCore loading process specially for your system.

Plug-in profiles are stored in the “Loader” subfolder of the Settings folder:

%AppData%\CodeRush for VS .NET\1.1\Settings.xml\Loader

If any of the plug-ins have changed on disk for some reason (recompiled and/or replaced) or a new plug-in is in-
stalled, the Loader Engine will notice that and correct its profiles for these specific plug-ins only.

You can see the profiles information on the “Plug-in Manager” options page in the Options Dialog:

543

Follow these steps to get to the “Plug-in Manager” options page:

1. From the DevExpress menu, select “Options…”.

2. In the tree view on the left, navigate to this folder:

Core

3. Select the “Plug-in Manager” options page.

NOTE: This page level is Expert, and will only be visible if the Level combo on the lower-left of the Options dialog is
set to Expert.

If you have any trouble with loading of some plug-ins or DXCore itself, you may try to rebuild the Loader profiles.
To do this, you need to remove the “Loader” folder with profiles from your system.

NOTE: if you are actively developing your own plug-in, it is recommended to change its “loading” setting to load
it manually in the Plug-In Manager, to prevent it from being loaded automatically. This will allow you to compile
and build your plug-in without errors due to file locks on the plug-in assembly. This option can be changed when
you create a new DXCore plug-in. If you already have created a plug-in or modify the existing one, you may tweak
the “DXCoreAssembly” attribute in the “AssemblyInfo” file of your plug-in solution to load it manually like this:

[assembly: DXCoreAssembly(DXCoreAssemblyType.PlugIn, “Assembly Title”, PlugInLoadType.Idle, LoadAbility-
Type.LoadDisabled)]

544

Change the LoadAbilityType parameter to LoadDisabled to make a plug-in loaded manually.

How to create a new CodeRush (DXCore) plug-in

There are two ways to create a new CodeRush (DXCore) plug-in in Visual Studio:

1. Inside the IDE, from the DevExpress menu, access the “New Plug-in…” menu item:

2. Create a new project of type DXCore (using File –> New Project menu item):

545

In the next dialog, choose your preferred language (Visual C# or Visual Basic) and select the DXCore category to see
available project templates for CodeRush plug-ins:

546

It is recommended to choose the “New Plug-in…” menu item, because in this case you can tweak additional settings
for your new plug-in. The following dialog appears once you click it:

Choose your language of preference as well as the plug-in type, type in the plug-in name and its location if required.
Click OK – the DXCore Plug-in Project Settings dialog will appear:

547

Here you can select a different title and change advanced plug-in settings, or just click OK to accept the default
settings.

Available settings:

•	 System Plug-In – сheck it if you’d like your plug-in to be loaded before all other plug-ins do.
Simple plug-in doesn’t need this option in most of the time. System plug-ins are built to the “IDETools\
System\DXCore\Bin\System\” folder and usual plug-in will be built to the “IDETools\System\DXCore\Bin\
PlugIns\” folder.

•	 Load Manually – check it if you want to not load the plug-in automatically when DXCore loads
in Visual Studio, this option is only relevant to the development phase. For example, suppose that whilst
developing your plugin, you are suddenly required to do something else. But because DXCore loads your
plug-in into memory on its startup automatically, the plugin’s assembly is locked, so, you won’t be able
to recompile your plug-in whilst your Visual Studio is not closed. In order to avoid this scenario, change
the “Load Manually” option to ensure that the DXCore never automatically loads your plugin. After that,
you’re able to load plugin using the PlugIn Manager (DevExpress -> Options -> Core -> PlugIn Manager).
With the PlugIn Manager you have only load your plugin into the address space of a single instance of
Visual Studio. This means that when you shut down this single copy of Visual Studio, you’ll be able to
continue development of your plugin.

•	 Default Load Type – different types of loading your plug-in:

o On Demand – plug-in is loaded when some process or action, for which the plugin
should work, takes place, e.g. if your plugin listens to one of the events – then it will be loaded
only when this event is being fired. Or, another example, if your plug-in contains an options page,
the plugin will be loaded when the Options Dialog is going to display this page.

o On Idle – plug-in will be loaded when Visual Studio editor is being idle (no user
operations/interaction with IDE).

o At Start-up – plugin will be loaded on DXCore start-up, which will add time to overall
loading time.

The best option here is the default one – “On Demand”. Most of the built-in DXCore plug-ins use this load type
option.

Click OK to accept your settings; the plug-in designer surface will be opened in Visual Studio:

548

The new plug-in does not provide any functionality yet. You can drop any DXCore component on its surface and
subscribe to required events including those coming from Visual Studio to extend the Visual Studio IDE.

How to install a particular DXCore plug-in

To install a particular DXCore plug-in you need to copy the plug-in dll into your plug-ins directory. Usually it looks
similar to this path:

%userprofile%\Documents\DevExpress\IDE Tools\Community\PlugIns\

where “%userprofile%\Documents” is a path to the user Documents folder.

Once you copied the plug-in assembly, start Visual Studio and the plug-in will be loaded automatically by the DX-
Core. To see the overall list of plug-ins loaded you can use the Plug-In Manager options page inside the Options
Dialog. Make sure that the plug-in you installed is listed in the Plug-In Managerand the state of the plug-in is
“Loaded”. For example, if we install the KeyWatcher plug-in, it will appear in the list:

549

If you don’t see the installed plug-in in the list, the Messages diagnostic tool window may have some clues. To open
it, go to the DevExpress | Tool Windows | Diagnostics | Messages menu item. Navigate to the top of all diagnostic
messages, expand the “Loading plugins…” item, find the “CR_KeyWatcher” plug-in and see the details of its load to
find any clues:

550

Note that the diagnostic messages are not logged by default, you have to manually enable the logging on the Diag-
nostics | Message Log options page:

Troubleshooting the DXCore plug-in loading

Sometimes CodeRush/DXCore plug-ins may not be loaded correctly. Here is a brief instruction if you’d like to invesi-
tigate and fix the loading of the plug-in in question.

1) If you develop and compile the plug-in, make sure the plug-in is built into the correct folder. The output path
should target to the Community Plug-ins folder. You can check the correct path by clicking the “Plug-ins…” button
(or via the right-click context menu and choosing the corresponding menu item) in the “DevExpress -> About” dia-
log. On Windows 7 it may look like this:

C:\Users\Admin\Documents\DevExpress\IDE Tools\Community\PlugIns

If you got the plug-in from the DXCore Community or other (trusted!) place, simply copy the plug-in assembly in the
folder above.

2) Make sure that the plug-in assembly is not blocked by Windows security. In the Windows Explorer, right-click the
assembly and choose Properties window. On the General tab click the “Unblock” button if any:

551

DXCore requires this to properly execute the code in the plugin.

3) Inside the Visual Studio IDE, make sure the plug-in is loaded via the Plug-In Manager. Follow these steps to get
to the Plug-in Manager options page:

552

1. From the DevExpress menu, select “Options…“;
2. In the tree view on the left, navigate to this folder: “Core”;
3. Select the “Plug-in Manager” options page;
4. Find your plug-in and verify its state – Loaded/Unloaded:

If the plug-in is not loaded,click the Load Plug-in Assembly button:

If the plug-in is loaded, make sure that all required items were registered on the right side of the Plug-in Manager
options page, for example:

553

4) If the plug-in was not loaded or does not provide the desired feature, make sure that the feature is enabled. The
plug-in may provide an options page which enables or disables the feature. If there is no options page, we can find
other plug-in loading clues in the DXCore Message Log window.

By default, the message logging is disabled. You can enable it on the Messages options page in the Diagnos-
tics category of the Options Dialog. After message logging is enabled, restart the Visual Studio IDE, open the
Messages tool window from the DevExpress | Tool Windows | Diagnostics | Messages menu item and find out what’s
going on with this specific plug-in.

If nothing helps, the DevExpress Support Team is the best source to contact for a help.

Message Log

The Message Log is a CodeRush/DXCore diagnostics tool window that records a history of important IDE Tools and
Visual Studio events live. The window is useful for diagnostic purposes and finding clues to unexpected DevExpress
IDE Tools behavior. To open it, click the DevExpress | Tool Windows | Diagnostics | Message Log menu item:

Here is what it looks like:

554

The Message Log is disabled, by default. To enable it, go to the Diagnostics | Message Log options page in
the CodeRush Options Dialog and check the Enabled check box.

The window contains a toolbar with several buttons, a messages list with several columns, and a status bar. The main
message list has two columns, by default:

•	 Message – the main column, where you can see the specific diagnostic message.

•	 Time stamp – the time stamp the message arrived on the Log window.

You can configure the columns of the main list by right clicking the top header and choose the appropriate items:

The items in the header popup menu are:

•	 Best Fit – automatically aligns the active column by width, so the content of the column is com-
pletely visible.

•	 Best Fit (all columns) – automatically aligns all columns by width.

•	 Columns Chooser – opens a small floating window where you can choose which columns should

555

be displayed in the main message list.

In addition to the Message and Time Stamp columns, you can make the following columns visible:

Category The category of the message.
HasData Boolean value, indicating whether a message has additional data.
Data Additional data in a message.
Index The index of a message.

If you right-click the messages list, and not its header, there’s another popup context menu with a few items:

Items of this menu are:

•	 Auto scroll – toggles automatic scrolling of the window on or off for the latest message. If
enabled, and the message is posted to the Message Log, the list will be automatically scrolled down, so the
latest message becomes visible.

•	 Auto wrap – toggles word wrapping inside the Messages column on or off.

•	 Expand and Collapse columns allows you mange collapsible items of the Messages columns –
make all of them visible or collapse messages with multiple items into a single row.

The toolbar has the following buttons:

Icon Button name Description

 Save log Saves all messages into a *.dxlog file that you can send to DevExpress
Support Services for investigation.

 Clear log Clears the list of messages.

 Auto scroll Enables or disables the auto scrolling of the messages list.

 Auto wrap Enables or disables the auto word wrapping of the messages.

 Data view Allows you to choose where you can see the details of a message, contain-
ing additional data, such as the exception being thrown. Available positions
are: on the left, on the right and don’t display.

 Enables/Disables
message logging

Toggles the message logging on or off for the current Visual Studio ses-
sion.

The status bar of the Messages tool window shows the total number of messages in the main messages list.

556

There are additional options available on the Diagnostics | Message Log options page. Note that the page level is
Expert, and will only be visible if the Level combo on the lower-left of the Options dialog is set to Expert:

Available options are:

•	 Enable logging messages – turns DXCore/CodeRush messages logging on or off.

•	 Maximum entries – the maximum number of messages in the list. Once the number is exceeded,
the old messages are removed and the new ones are added to the end of the main messages list.

•	 Log Visual Studio commands – allows Message Log to intersect and log messages of the Visual
Studio commands performed.

•	 Log internal tool window events – toggles the capability of the logging of events that fired inter-
nally inside Visual Studio tool windows

•	 Log messages to disk – enables or disables live message logging into a disk file. This might
be useful when you experience an IDE crash that prevents you from saving messages from the Message
Log tool window. You can find this file in the Log folder of the IDE Tools settings folder.

Deploying DXCore or community plug-ins using a VSIX extension

A DXCore plug-in is usually represented by a single assembly. It might also include some additional data, for exn-
ample, language dictionaries for the Spell Checker CodeRush plug-in and, probably, setting files, such as shortcuts.
To install the plug-in, simply copy an assembly to the Community Plug-ins folder that looks like this in most cases:

557

%Documents%\DevExpress\IDE Tools\Community

where %Documents% is your Windows Documents folder.

The community plug-in path is configurable and can be seen on the IDE Tools Settings options page. If a plug-in
contains additional files, there should be some instructions on how to install it and where to copy those additional
files. Starting with the 11.2 release, IDE Tools include a special VSIX DXCore plug-in project template that allows
you to create a usual DXCore plug-in and deploy it through an Extension to the Visual Studio IDE:

Note that it is necessary to install the Visual Studio SDK to be able to create projects of this type.

Here’s a project structure inside the Solution Explorer:

An extension references all assemblies required by DXCore and exports the IVsixPluginExtension implementer (from
the DevExpress.CodeRush.Common assembly):

558

Then, DXCore imports all implementers and uses their assemblies as a location to load additional plug-ins. The
VSIX extension may contain multiple plug-in assemblies that will be automatically loaded by DXCore when found.

Once the plug-in is successfully compiled, you will notice a regular VSIX Extension file created inside the output
folder of the plug-in solution:

If you execute it, you will see the standard Visual Studio Extension Installer dialog:

559

If you click Install, the installer will unpack the content of the plug-in to the following folder:

%AppData%\Microsoft\VisualStudio\10.0\Extensions

and show the result of an installation:

Once the plug-in is installed, you will see it inside the Visual Studio Extension Manager:

560

You can disable any plug-in extension or completely uninstall it inside the Extension Manager by clicking the corre-
sponding buttons.

Shared Source Samples Solution

CodeRush Pro is shipping with a plug-ins sample solution called “Shared Source”. It has several projects with open
source plug-ins that are intended for learning plug-ins development using the DXCore framework. This solution is
located inside your installation folder, e.g.:

C:\Program Files\DevExpress 2010.1\IDETools\System\CodeRush\SOURCES

You’re welcome to modify and compile the source code as you like.

Here’s the table of plug-ins available with the brief descriptions. Click on the plug-in name for more details, if appro-
priate.

Plug-in name Description
Installed

by
default

CR_ClipboardHistory One of the biggest source code plug-ins that shows the recent
history of clipboard operations in a configurable window. The
history can optionally persist across Visual Studio sessions.

CR_CommentHighlighter This feature paints the ” TODO:” comment part in a low-contrast
color, and the rest of the to-do text in a different, higher-contrast
color.

CR_CommentPainter The plug-in with a single “Comment Painter” feature draws a
bubble icon over the comment “//” symbols in C#, or “’” (single
quote) in Visual Basic. The source code shows how to paint
bitmaps on the code editor.

561

CR_ConvertToInteger Contains a sample code for the “Convert to Integer” code pro-
vider, which converts an expression to an integer, using a call to
Math.Ceiling() (or Math.Floor() or Math.Round()).

CR_
DropMarkerBeforeJump

The plug-in listens for the “Edit.GoToDefinition” Visual Studio
command, and drops a marker before it is executed, so you can
easily to go back once you finish navigation to definitions.

CR_EnumAssist An Intellassist extension plug-in that suggests enumeration vale-
ues in the appropriate places (e.g. when you’re going to type one
of the enumeration elements).

CR_ForEach Implements the “ForEach” TextCommand, which allows tem-
plates to iterate through different kinds of language elements.

CR_GoogleThis This plug-in allows you to google the word/ identifier at the text
caret.

CR_Intellassist The main plug-in for the Intellassist support of CodeRush.

CR_LineHighlighter Contains the “Line Highlighter” feature, which paints the current
line in the code editor with a different background color.

CR_MemberMover Allows you to move members into regions by clicking on
the Member Icon.

CR_MemberOrg Organizes members into logical groups that you define. Member
Mover can wrap members into regions and specify a comment
starting before each members group.

CR_PathAssist This is another Intellassist extension plug-in that suggests phys-
ical paths for files on your hard drive as you type them inside of
a string.

CR_RightMarginLine Paints a vertical line at the column you specify. The line is
completely configurable on the appropriate options page, e.g. line
color, line style, line width, line opacity, etc.

CR_ShowMetrics Displays a different kind of metrics information to the left or
right of a member declaration inside the code editor.

CR_Sounds Plays a specific sound file to notify a user when a feature is being
performed.

CR_StructuralHighlighting Draws the light low-contrast vertical lines connecting matching
block delimiters (e.g., “{” and “}” in C#, for example).

CR_TemplateGoto Adds the GoTo text command, which takes a single parameter,
used to indicate the type of code to locate and there, insert a text
expansion.

CR_VSHelpers Adds an option to make the most-recently-added project the start-
up project. Contains the “Collapse to Projects” feature as well.

CR_
XmlDocCommentPainter

Paints over XML Doc Comments in the editor, representing
them in a nice-looking visual style, improving its readability.

CodeRush object for accessing to DXCore services

The CodeRush object provides access to DXCore/CodeRush services. Historically it was called CodeRush,
because DXCore framework was not decoupled from the CodeRush product at the beginning; in other words, DX-
Core did not exist at that time. Today, it should technically be called DXCore.

The full list of services accessible through CodeRush object can be seen in the corresponding topic.

562

To programmatically use this object you have to reference the DevExpress.CodeRush.Core assembly in your project.
The object is located in the same named DevExpress.CoreRush.Core namespace. Note that when you create a
DXCore based plug-in this assembly is automatically referenced and the namespace is added for you into the source
code of a plug-in.

For example, the CodeRush object has a property “Breakpoint” of type BreakpointServices, which in turn has prop-
erties and methods you can use. This service (Breakpoint) provides methods for retrieving and toggling breakpoints
in the IDE code editor. If you want to call BreakpointServices‘ Togglemethod, use code like this:

CodeRush.Breakpoint.Toggle(lineNumber)

In general, every property and method you will need in DXCore (CodeRush) is accessed similarly to this example

(e.g., CodeRush . ServiceName . PropertyOrMethod).

There is a single method of the CodeRush object:

Name Description
ShowURL Opens a web browser page inside Visual Studio IDE with the passed in URL address.

And two events:

Name Description
Loaded Fired when CodeRush engine is loaded.
Unloading Fired when CodeRush engine is being unloaded.

Option Pages and Decoupled Storage overview

You can add custom user-friendly option pages that will automatically be integrated into the IDETools Options
Dialog. If your DXCore plug-in has any kind of user-configuration, the options page will allow you and other
developers easily customize the features of your plug-in.

Option pages offer a number of advantages:

•	 They appear in one place, and are searchable by the user. This provides a consistent look and feel
to the application.

•	 The storage mechanism is decoupled from the options page itself. Settings are stored in a consiso-
tent location on disk, and easily transfer between machines.

•	 They have custom events that make it easy to read and write settings to disk.

Options pages have a surface of a minimum size of 480×530 pixels. At runtime, options pages can be resized to the
bigger size, but they cannot be smaller than the minimum size, so everything needs to fit in this space. If you need
more room for your options controls, you might consider a second options page, or more traditional strategies for
dealing with space constraints, such as scroll bars or perhaps a tab control.

You can use any third-party controls, but it’s really only safe to do this if you’re the only developer who will use your
plug-in. If you expect to share plug-ins with other developers who might not have a license to your third-party con-
trol, it is recommended to use only the standard .NET controls, or controls that ship with the DXCore (the controls
located in the “DXCore…” groups of the Toolbox). Bear in mind that the appearance of the Options Dialog can be
changed and DXCore controls will change their “look and feel” when another dialog skin is applied.

563

How to create a new plug-in Options page

This topic is about adding a DXCore Options page. It has three parts to make it easier to read and follow:

1. Adding and designing an options page (this post)

2. Implementing the options page settings storing logic

3. Using settings from an options page inside a plug-in

Here’s the first part of the topic, and the steps we need to accomplish, to add an options page to your plug-in, and
make it work:

1. Run the options page wizard

2. Layout controls on the page

3. Add runtime behavior code for controls, if necessary

Let’s take a look at these steps in detail.

The Options Page Wizard

In the Visual Studio’s Solution Explorer tool window, right-click your DXCore plug-in project and choose Add | New
Item…

564

The Add New Item dialog appears. Follow these steps to add an Options page:

1. Choose the Language section of you plug-in (CSharp or Visual Basic)

2. Select the DXCore category inside of the Language section

3. Select the Options Page template

4. Specify a meaningful name. It is convention to prefix options pages with “Opt“.

5. Click the Add button:

The New Options Page dialog will appear:

There are three options to set here:

•	 User Level

The User Level option determines when the page will be seen: for new users, for advanced users, or expert users.
This mode is changed on the IDE tools Options Dialog, for example, at the Expert level, all options pages are visible.

565

•	 Category

The Category list is populated with all the existing option categories automatically. You can select one of them, or
specify your own. Sub-categories are separated with the backslash character (e.g., “Editor\Painting“).

•	 Page Name

Enter the page name (it is recommended to use only characters that are legal for file names). You can change all
these options later, inside the options page source code, but you’ll save some time if you set them correctly from the
beginning.

Click OK. The options page wizard will generate the new options page item and add it to the active project:

The Options Page design surface is activated in the editor after the item is added:

Layout controls on the page

Populate your options page with controls suitable for manipulating your options. If you plan on sharing this options
page with other developers outside of your team, it is recommended using only the .NET controls that ship with Visu-
al Studio, or controls that ship with the DXCore (the controls located in the “DXCore…” groups of the Toolbox).

Adding runtime behavior code for controls

Here, you might want to fill the control content with appropriate items, group radio buttons, implement drag-n-drop
behavior for controls, etc.

The next step is to implement the logic of the options page to correctly read and write plug-in settings.

How to implement the Options page logic for storing settings

Here’s the second part of the post about adding an options page into your DXCore plug-in. See the other parts, to
learn more:

566

1. Adding and designing an options page

2. Implementing the options page settings storing logic (this post)

3. Using settings from an options page inside a plug-in

Here are the steps we need to accomplish, to implement a logic for your options page, and make it load and save its
settings correctly:

1. Prepare the options page (set values for the controls based on the settings in storage)

2. Optionally specify default values (enables the “Defaults Settings…” button)

3. Commit changes (transfer values on the controls to storage)

Preparing the options page

Handle the PreparePage event of your new options page. This event is triggered just before your options page is first
shown to the user. Use the ea.Storage parameter to read the settings from the decoupled storage and assign them to
your controls, using code like this:

1

2

3

4

5

private void OptMySettingsPage_PreparePage(object sender, DevExpress.
CodeRush.Core.OptionsPageStorageEventArgs ea)

{

 chkEnabled.Checked = ea.Storage.ReadBoolean(«Preferences», «Enabled»,
true);

 // ...

}

Replace the “// …” in the sample code above with similar calls to transfer the loaded data to other controls on the
form as needed.

Specifying default values

It is recommended to provide default settings for your options page. To do this, handle the RestoreDefaults event.
If you handle this event, the “Default Settings…” button will be enabled on the Options Dialog when your page is
displayed:

Use code like this, to initialize the controls to their default values:

567

1

2

3

4

5

private void OptMySettingsPage_RestoreDefaults(object sender, DevExpress.
CodeRush.Core.OptionsPageEventArgs ea)

{

 chkEnabled.Checked = true;

 // ...

}

Clicking on the “Default Settings…” button will fire this event. Here, you need to adjust properties of the controls on
the options page. This event is not supposed to store settings – just change the controls.

Commiting changes

Handle the CommitChanges event of your new options page. This event is triggered when the user clicks either
the OK or the Apply button on the IDE tools Options Dialog. Use the ea.Storage parameter to write the settings to
the decoupled storage, like this:

1

2

3

4

5

private void OptMySettingsPage_CommitChanges(object sender, DevExpress.
CodeRush.Core.OptionsPageStorageEventArgs ea)

{

 ea.Storage.WriteBoolean(«Preferences», «Enabled», chkEnabled.Checked);

 // ...

}

These three events take care of saving and loading settings for the options page. The next step is to ensure that your
plug-in is notified whenever users make a change on your new options page.

How to load stored settings from an Options page inside of a plug-in

This is the third and the latest part of a topic about adding an options page into your DXCore plug-in. See the other
parts, to learn more:

1. Adding and designing an options page

2. Implementing the options page settings storing logic

3. Using settings from an options page inside a plug-in (this post)

In this post, we are going to read plug-in settings from the decoupled storage and update them when they are changed
on the options page.

In the Visual Studio form designer, activate your standard plug-in design surface. In the Properties tool window, click
the Events button to see the available events. Double-click the OptionsChanged event to create an event handler for
it.

568

The OptionsChanged event is fired when the user clicks either the OK or the Apply button on the IDETools Options
dialog (this event is triggered after your custom options page handles its CommitChanges event).

Inside the OptionsChanged event handler, add the following code to see if your page was changed:

1

2

3

4

5

private void PlugIn1_OptionsChanged(OptionsChangedEventArgs ea)

{

 if (ea.OptionsPages.Contains(typeof(OptMySettingsPage)))

 UpdateSettings();

}

Change “OptMySettingsPage” in this sample code to the class name of your options page. Now, it’s time to imple-
ment the UpdateSettings method. It may look like this:

1

2

3

4

5

6

7

8

void UpdateSettings()

{

 using (DecoupledStorage storage = OptMySettingsPage.Storage)

 {

 _IsEnabled = storage.ReadBoolean(«Preferences», «Enabled», true);

 // ...

 }

}
_IsEnabled is a private boolean field that can be declared in this plug-in to hold the state of the option. Replace the
“…” comment with similar assignments to other private fields declared in your plug-in.

569

Make ensure that the default values passed to ReadBoolean and other ReadXxx methods of the DecoupledStorage
object match the default values specified in your PreparePage event handler, and in your RestoreDefaults event
handler. Since these default values are showing up in three places, you might want to make them public static or
constant fields. This is especially useful if you expect your default values to be changed often during development.

The final step is to initialize settings according to the stored state (or set them to defaults). The easiest way is to do
this on a plug-in startup – just add a call to “UpdateSettings” at the end of the “InitializePlugIn” method of the
standard plug-in instance.

1

2

3

4

5

6

7

8

9

// DXCore-generated code...

#region InitializePlugIn

public override void InitializePlugIn()

{

 base.InitializePlugIn();

 UpdateSettings();

}

#endregion
That’s it – now you have a custom options page for you plug-in!

DXCore DecoupledStorage object for storing data

As the name says, the object handles decoupled storage for DXCore plug-ins. It is recommended for plug-in develop-
ers to use DecoupledStorage for persisting data (e.g. plug-in settings). The storage has its own structure and saved in
a file of a specific format in the appropriate location.

Here are its methods:

Name Description
Clear Clears the contents of the active language-specific storage object (set through theLanguage-

ID property). If LanguageID is empty (“”), then the primary (language-neutral) storage object
is cleared. To clear all storage objects, useClearAll().

ClearAll Clears the contents of the storage object and any language-specific storage object children.
To clear only the active storage object (set through theLanguageID property), use the Clear()
method.

Create Returns an instance of the new DecoupledStorage with the specifed BasePath,Catego-
ry and PageName properties.

Delete Physically removes the storage from the system.
DeleteAll Physically removes the storage and its folders from the system.
DeleteFolder Physically removes the specified folder from the system.
DeleteKey Deletes the specified key in the given section.
EraseSection Deletes the specified section.

570

GetKeys Returns a string array of keys for the given section.
GetRootFolders Returns a collection of the root folders.
GetSections Returns a string array of sections.
GetSubFolders Returns a collection of subfolders inside the specified folder. Note that the value can be null if

the folder contains subfolders without storage.
LoadSerialized Loads a serializable object from the specified file name (which should be without a path). If

this method is called when this storage object is in a language-specific state (e.g., Language-
ID = “CSharp“), the actual file name will have the LanguageID inserted before the file exten-
sion (e.g., “HelloWorld.bin” becomes “HelloWorld.CSharp.bin“). If this storage object is in a
language-neutral state (e.g., LanguageID = “”), then the file name is unchanged.

LoadSubFolders Loads and initializes folders of this storage.
ReadBoolean Reads a boolean value from the storage object. If the section or key was not found, this meth-

od returns the value passed in defaultValue.
ReadChar Reads a char value from the storage object. If the section or key was not found, this method

returns the value passed in defaultValue.
ReadColor Reads a Color value from the storage object. If the section or key was not found, this method

returns the value passed in defaultValue.
ReadDateTime Reads a DateTime value from the storage object. If the section or key was not found, this

method returns the value passed in defaultValue.
ReadDouble Reads a Double value from the storage object. If the section or key was not found, this method

returns the value passed in defaultValue.
ReadEnum Reads a enumeration element value from the storage object. If the section or key was not

found, this method returns the value passed in defaultValue.
ReadInt32 Reads a System.Int32 value from the storage object. If the section or key was not found, this

method returns the value passed in defaultValue.
ReadSingle Reads a Single value from the storage object. If the section or key was not found, this method

returns the value passed in defaultValue.
ReadString Reads a string value from the storage object. If the section or key was not found, this method

returns the value passed in defaultValue.
ReadStrings Reads a string array value from the storage object. If the section or key is not found, this

method returns the value passed in defaultValue.
ReadXmlNode Reads a System.Xml.XmlNode value from the storage object. If the name was not found, this

method returns null.
SaveSerialized Saves a serializable object to the specified file name (which should be without a path). If this

method is called when this storage object is in a language-specific state (e.g., LanguageID =
“CSharp“), the actual file name will have the LanguageID inserted before the file extension
(e.g., “HelloWorld.bin” becomes “HelloWorld.CSharp.bin“). If this storage object is in a lan-
guage-neutral state (e.g., LanguageID = “”), then the file name is unchanged.

SetStorageObject Sets the IStorageObject implementer to be used for storing data in the particular format. Note
that it is hidden from Intellisense.

UpdateStorage Commits changes to disk. If any language-specific storage object children have been created,
that data is also committed to disk.

ValueExists Returns true if a value exists at the given section and key.
WriteBoolean Writes a boolean value to the storage object.
WriteChar Writes a char value to the storage object.
WriteColor Writes a Color value to the storage object.

571

WriteDateTime Writes a DateTime value to the storage object.
WriteDouble Writes a Double value to the storage object.
WriteEnum Writes a enumeration value to the storage object.
WriteInt32 Writes a Int32 value to the storage object.
WriteSingle Writes a Single value to the storage object.
WriteStorageData Writes all pending data to the storage.
WriteSting Writes a string value to the storage object.
WriteStrings Writes a string array value to the storage object.
WriteXmlNode Writes a System.Xml.XmlNode value to the storage object.

See the “How to use DecoupledStorage to persist your settings” topic, to learn more on storage usage.

DXCore DecoupledStorage structure and settings file format

The DecoupledStorage object is used to handle storage for your DXCore plug-ins data. Usually, DecoupledStor-
age represents a single DXCore Options Page. If you are not going to create an Options Page, the DecoupledStor-
age will represent just named data storage.

The storage has three main identifiers (properties):

•	 Category (i.e. the path to the storage)

•	 Name (e.g. “MyPlugIn Settings”)

•	 Language (e.g. C#, C++, VisualBasic)

In case of Options Pages, the Name property is used to identify the Page, and the Category is intended to identify the
path to your page. The path represents the part of the tree on the left of the Options Dialog. IDE tools have their own
categories inside of the Dialog. You are able to put your Options Page into any of the existing categories, or create a
new one, dedicated specially to your plug-ins.

If you are not going to create an Options Page, the Name property is used to identify the storage, and the Catego-
ry property will identify an optional physical path to your storage relative to the global DXCore settings storage path.

Currently, DecoupledStorage is represented by a single file in the XML format. In case you don’t like XML format,
you can implement your own decoupled storage object via the IStorageObject interface implementer. There is
another storage implementer exists, which can store your settings in the INI files format.

Structurally, DecoupledStorage consists of the following elements:

•	 Folders

•	 Sections

•	 Options

Data (i.e. Options) is stored inside of Sections. These elements are accessible by name. Each Option element stores
a single value of a specific type. The Language property of the DecoupledStorage determines which programming
language this particular storage represents. Data for different languages is stored inside of a single storage. Fold-
ers are intended to represent complex, tree-like objects (e.g. see the Shortcuts options page). Each folder of the
storage is stored in a separate file.

572

The settings file has hierarchical format to correspond to the structure of the DecoupledStorage:

Here is an example of such a file:

Settings file identifier is intended to distinguish DXCore storage files from other XML files and written as an XML
comment. After the file identifier, the single Page element goes, which names the storage (or an Options Page).
The name of the page is identical to the name of the file. The Page element may contain several or single Lan-
guage elements, which contain Sections and Options by-turn.

573

That’s how the DecoupledStorage object is organized. It is not really necessary to understand, but it can be useful if
you will use this object to persist your plug-in data.

How to use DXCore DecoupledStorage to persist plug-in data

To persist your data using the DecoupedStorage object, use the appropriate ReadXXX and WriteXXX methods. In
case your settings are language dependant, DecoupledStorage includes a property “LanguageID” that can create and
select child storage objects for the purposes of language-specific storage (e.g., to support independent settings for C#,
C++, Basic, etc.). Just set the LanguageID to the appropriate Language identifier (e.g., “CSharp”, “C/C++”, “Basic”,
etc.), and then read and write normally. To activate the language-neutral storage object, set the LanguageID to an
empty string. If your code is inside a CodeRush Options Page, you can get the LanguageID through the Options
page’s LanguageID property (also, you can handle the LanguageChanged event in your Options page to find out
when the user wants to create settings for another programming language).

Here is a sample of writing and reading data via the DecoupledStorage object:

CSharp code:

•	 Writing data:

1

2

3

4

5

6

7

using (DecoupledStorage storage = new DecoupledStorage(“MyPlugInData”))

{

 storage.WriteInt32(«Dementions», «Length», 100);

 storage.WriteInt32(«Dementions», «Height», 200);

 storage.WriteInt32(«Dementions», «Width», 300);

 storage.WriteString(«General», «ObjectName», «MyPlugInData»);

}
Reading data:

01

02

03

04

05

06

07

08

09

10

11

int length;

int height;

int width;

string objectName;

using (DecoupledStorage storage = new DecoupledStorage(“MyPlugInData”))

{

 length = storage.ReadInt32(«Dementions», «Length»);

 height = storage.ReadInt32(«Dementions», «Height»);

 width = storage.ReadInt32(«Dementions», «Width»);

 objectName = storage.ReadString(«General», «ObjectName»);

}

574

VisualBasic code:

•	 Writing data:

1

2

3

4

5

6

Using storage As DecoupledStorage = New DecoupledStorage(“MyPlugInData”)

 storage.WriteInt32(«Dementions», «Length», 100)

 storage.WriteInt32(«Dementions», «Height», 200)

 storage.WriteInt32(«Dementions», «Width», 300)

 storage.WriteString(«General», «ObjectName», «MyPlugInData»)

End Using
Reading data:

01

02

03

04

05

06

07

08

09

10

Dim length As Integer

Dim height As Integer

Dim width As Integer

Dim objectName As String

Using storage As DecoupledStorage = New DecoupledStorage(“MyPlugInData”)

 length = storage.ReadInt32(«Dementions», «Length»)

 height = storage.ReadInt32(«Dementions», «Height»)

 width = storage.ReadInt32(«Dementions», «Width»)

 objectName = storage.ReadString(«General», «ObjectName»)

End Using

DXCore Linked Identifiers feature

Linked Identifiers are a built-in feature of DXCore, which allows you to simultaneously change similar pieces of the
text (code) located in different places. If you change one linked identifier, the others that are associated with it will
automatically be changed as well. For instance, linked identifiers are enabled when you apply the Rename refactor-
ing.

575

There are two types of linked identifiers:

•	 Simple, single-document linked identifiers

These linked identifiers are connected to a single text document only. Link information of such identifiers is not per-
sisted, so if you close and reopen a file, all the links located in that file will be lost.

•	 Complex, multi-document linked identifiers

These linked identifiers can exist in several source files, no matter if they are opened or not. If you close all files
where associated link identifiers reside, they will stay alive when you reopen one of the files.

To change the text of a linked identifier, simply place the editor caret inside a link and enter the new text. When the
linked identifier is active, the following actions are available:

Shortcut Action Description
Enter orNum
Enter

Break All Linked Identifiers Accepts changes in all linked identifiers in the currently active list.

Ctrl+Enter Break Linked Identifier Removes the currently active linked identifier from the active list.
Tab Select Next Linked Identifier Selects the next linked identifier.
Shift+Tab Select Previous Linked

Identifier
Selects the previous linked identifier.

Breaking identifiers actions are available via the code editor context menu as well:

You can customize the key bindings on the Shortcuts options page in the Options Dialog. Appearance options for the
linked identifiers are available on the Editor | Painting | Linked Identifiers options page:

576

DXCore adornments architecture

The Visual Studio 2010 IDE shell has been rewritten using the Windows Presentation Foundation (WPF),
in other words, it has a completely different code editor based on the new WPF technology. Earlier versions
of DXCore used GDI and Win32 API calls to paint the inside code editor before Visual Studio 2010 release, and
would not work inside the new code editor. To bring painting support to Visual Studio 2010 and leave the support of
previous Visual Studio versions, DXCore has been also rewritten using the new painting abstraction layer, which has
a split code base for different platforms (WPF, GDI). This abstraction layer is called the “Adornments” architecture.
This architecture allows having a single code base for all versions of Visual Studio which helps to maintain both
graphic platforms at once and have independent painting, non-dependant on the version of IDE used.

There are two main objects of the DXCore adornments architecture used:

1. TextViewAdornment (for TextView object) – is a base type of a code editor adornment object.
An adornment is a graphical object drawn inside code editor. It can be a line, pixel, arrow, string, etc.

2. TextDocumentAdornment (for TextDocument object). Once it is added to a particular text
document, it will create adornments (descendants of the TextViewAdornment) for each currently available
(and opened/closed as well) text views of this text document automatically.

So, the TextDocumentAdornment object creates TextViewAdornments for all text views, and the TextViewAdor-
ment object draws the graphical object itself. Having said that, first, you need to create a TextDocumentAdorn-
ment descendant object. Once you create it, you have to override the publicNewAdornment method, which will
create TextViewAdornment objects that has the following signature:

577

1 protected abstract TextViewAdornment NewAdornment(string feature, IEle-
mentFrame frame);

In this method, you need to create a specific VisualObjectAdornment. This is only one descendant of the Text-
ViewAdornment object. The NewAdornment method must return the newly created VisualObjectAdornment.
The VisualObjectAdornment object allows you to paint inside VisualStudio code editor and represent a graphical
object (i.e. adornment). To make this happen, you need to override the Render virtual method of this object with the
following signature:

1

2

3

public virtual void Render(IDrawingSurface context, ElementFrameGeometry
geometry)

{

{
All painting logic must be located in this overridden method. There are two parameters passed to this method which
are used to paint on the code editor:

1. The “context” of type “IDrawingSurface” – the code editor context on which painting happens. It has the followt-
ing useful painting methods:

•	 DrawArrow

•	 DrawBezier

•	 DrawBezierLine

•	 DrawCircumference

•	 DrawCorner

•	 DrawEllipse

•	 DrawImage

•	 DrawLine

•	 DrawObject

•	 DrawPixel

•	 DrawPolygon

•	 DrawRectangle

•	 DrawSelectionBar

•	 DrawString

•	 etc

All these methods draw the corresponding object of the same method name.

2. The “geometry” of type “ElementFrameGeometry” – provides geometry information of an adornment (such as
its size, bounds, location, start point, end point, etc). This information is calculated inside the TextDocumentAdorn-
ment constructors. All constructors accept one or several parameters which specify the coordinates of the text related

578

adornment. So, it means that an adornment is bound to a text (source code) inside a code editor which coordinates
are specified by the SourcePoint, SourceRange or DocPoint, DocRange objects. This ElementFrameGeometry is
initialized from the “binding” parameter of the “IElementFrame” type of the NewAdornment method, which stores
all adornment geometry information passed into TextDocumentAdornment constructors.

There are several CodeRush open source samples which use adornment architecture to paint on the code editor. You
might want to take a look at one of the following plug-ins to learn more on how to paint on the code editor: CR_
CommentHighlighter, CR_CommentPainter, CR_StructuralHighlighting, CR_XmlDocCommentPainter.

There are also several project item wizards made for simplifying the visual adornments creation process.

DXCore adornments creation and wizards

There are several project item wizards made for simplifying the DXCore visual adornments creation process:

•	 DXCoreAdornment – widespread adornments project item which consists of two main
adornment objects bound to text coordinates: TextDocumentAdornment and VisualObjectAdornments.

•	 ViewPortAdornment – contains of EditorAdornment and ViewPortAdornment which can be
added to a TextDocument or TextView and bound to screen or text view coordinates.

•	 TileVisual – contains of two DXCore tile adornment objects: TextDocumentTile and TileVisu-
al to create tiles in the code editor. Tile adornments can react on mouse events.

Here’s the code of these project items:

DXCoreAdornment:
using System;

using System.Collections.Generic;

using DevExpress.DXCore.Adornments;

579

using DevExpress.DXCore.Platform.Drawing;

using DevExpress.CodeRush.Core;

using DevExpress.CodeRush.StructuralParser;

namespace StandardPlugIn1

{

 class DXCoreAdornment1DocumentAdornment : TextDocumentAdornment

 {

 public DXCoreAdornment1DocumentAdornment(SourceRange range)

 : base(range) { }

 protected override TextViewAdornment NewAdornment(string feature, IElement-
Frame frame)

 {

 return new DXCoreAdornment1ViewAdornment(feature, frame);

 }

 }

 class DXCoreAdornment1ViewAdornment : VisualObjectAdornment

 {

 public DXCoreAdornment1ViewAdornment(string feature, IElementFrame frame)

 : base(feature, frame) { }

 public override void Render(IDrawingSurface context, ElementFrameGeometry
geometry)

 {

 // TODO: Add adornment painting logic

 context.DrawRectangle(null, Colors.Red, geometry.StartRect);

 context.DrawRectangle(null, Colors.Green, geometry.EndRect);

 context.DrawRectangle(null, Colors.Blue, geometry.Bounds);

 }

 }

}

ViewPortAdornment:
using System;

using System.Collections.Generic;

using DevExpress.DXCore.Adornments;

using DevExpress.DXCore.Platform.Drawing;

using DevExpress.CodeRush.Core;

using DevExpress.CodeRush.StructuralParser;

580

namespace StandardPlugIn1

{

 class ViewPortAdornment1DocumentAdornment : EditorAdornment

 {

 public ViewPortAdornment1DocumentAdornment() { }

 protected override TextViewAdornment GetTextViewAdornment(TextView text-
View)

 {

 return new ViewPortAdornment1Adornment(textView);

 }

 }

 class ViewPortAdornment1Adornment : ViewPortAdornment

 {

 public ViewPortAdornment1Adornment(TextView textView)

 : base(textView, Point.Zero, false) { }

 public override void Render(IDrawingSurface context, ElementFrameGeometry
geometry)

 {

 // TODO: Add adornment painting logic

 }

 }

}

TileVisual:
using System;

using System.Collections.Generic;

using DevExpress.DXCore.Adornments;

using DevExpress.DXCore.Platform.Drawing;

using DevExpress.CodeRush.Core;

using DevExpress.CodeRush.StructuralParser;

namespace StandardPlugIn1

{

 class TileVisual1DocumentAdornment : TextDocumentTile

 {

 public TileVisual1DocumentAdornment(DocPoint start, DocPoint end, CoreEven-
tHub master, object obj)

 : base(start, end, master, obj) { }

 protected override TextViewAdornment NewAdornment(string feature, IElement-
Frame binding)

581

 {

 TileVisual1Adornment newAdornment = new TileVisual1Adornment(binding);

 newAdornment.Cursor = Cursor.Arrow;

 return newAdornment;

 }

 }

 class TileVisual1Adornment : TileVisual

 {

 public TileVisual1Adornment(IElementFrame binding)

 : base(binding) { }

 public override void Render(IDrawingSurface context, ElementFrameGeometry
geometry)

 {

 // TODO: Add adornment painting logic

 }

 }

}

After a file with adornment objects is created, we need to add it to a TextDocument to make the adornments work.
Here are a few ways to achieve this:

1) Simply add it to an active document anytime you want like this:

TextDocument document = CodeRush.Documents.ActiveTextDocument;

SourcePoint carePosition = CodeRush.Caret.SourcePoint;

DXCoreAdornment1DocumentAdornment docAdornment = new DXCoreAdornment1DocumentA-
dornment(carePosition);

document.AddAdornment(docAdornment);

This code gets the active text document, the current text caret position and adds the newly created adornment to the
text document. To remove an adornment, call the RemoveAdornments on the TextDocument object:

document.RemoveAdornment(docAdornment);

 2) The second and the preferred way is to add an adornment at the time the code editor is going to paint language
elements. For this purpose, the EventNexus.DecorateLanguageElement event should be used. Inside the Initial-
izePlugIn overridden method of your StandardPlugIn instance, subscribe to theDecorateLanguageElement event:

public override void InitializePlugIn()

{

 base.InitializePlugIn();

 EventNexus.DecorateLanguageElement += ehDecorateLanguageElement;

582

}

 Don’t forget to unsubscribe from the event inside the FinalizePlugIn:

public override void FinalizePlugIn()

{

 EventNexus.DecorateLanguageElement -= ehDecorateLanguageElement;

 base.FinalizePlugIn();

}

Inside the ehDecorateLanguageElement event handler, create an instance of an adornment and add it to the Deco-
rateLanguageElementEventArgs:

void ehDecorateLanguageElement(object sender, DecorateLanguageElementEventArgs
args)

{

 LanguageElement activeElement = args.LanguageElement;

 if (CanDrawLanguageElement(activeElement))

 {

 DXCoreAdornment1DocumentAdornment docAdornment = new DXCoreAdornment1Docu-
mentAdornment(activeElement);

 args.AddAdornment(docAdornment);

 }

}

In the CanDrawLanguageElement method, you may perform some requirements, e.g. filter language elements you
want to be painted. There’s no need for manual removal of adornments in this case, because if the requirements are
not met (e.g. no language elements to paint) then adornments won’t be added at all.

DXCore abstract source tree structure

DXCore supports lots of programming languages provided by the language services in Visual Studio. These services
provide language-specific support (such as CSharp, Visual Basic, C++) for editing source code in the integrated de-
velopment environment (IDE). DXCore includes appropriate source code parsers for these programming languages.
When the source code is parsed, DXCore builds an abstract syntax tree (AST) that is a representation of the
syntactic structure of the source code of a particular programming language. This abstract syntax tree is unified for
all languages supported by IDETools. That’s why it is easy to develop a language-independent feature as a DXCore
plug-in – in most cases your feature will be available in all corresponding languages automatically.

The abstract syntax tree is represented by the DXCore language elements. LanguageElement is the main base
class for a rich variety of classes which denote a construct occurring in the source code and present a corresponding
node in the unified tree. You can see the result parsed source tree using theExpression Lab tool window available via
the “DevExpress | Tool Windows | Diagnostics | Expression Lab” menu item in Visual Studio.

583

All DXCore source code parsers are maintained by a single assembly named “DevExpress.DXCore.Parser”. This
assembly can be used for code parsing and code generation (to build language-specific source code). You can use it
according to the DevExpress license agreement.

Here is a complete map of LanguageElement class inheritance, excluding some very rarely used language elements.
Click on one of the images to open it in full size. Bear in mind that the size of the images is HUGE, and you have to
scroll it to see the content. Click on the picture once again to close it.

Linear view:

Clustered view:

584

DXCore Expression Lab tool window

The Expression Lab is a DXCore diagnostic plug-in containing the tool window that displays the
hierarchical abstract source tree built by the DXCore. This is useful to learn the structure of the parsed source code
and created a source tree to build your own DXCore plug-ins. When you know the structure of the tree, you can
build your own trees or its parts and generate the appropriate code for all programming languages supported by the
DXCore. Also, you can see the set of properties each language element has, to learn more on how to construct any
specific elements.

This is what the tool window look like:

585

On the left you can see the resulting hierarchical source tree of the active source file opened inside the IDE. The
tree contains all language elements parsed by the DXCore and constructed into a single hierarchical tree. Each
language element has its own icon to easier distinguish between them. You can collapse or expand nodes of the tree
if necessary. By default, all nodes are collapsed, because too many nodes may distract from learning the specific
parts of the source tree. If you would like to see a part of the tree for the specific source code, click inside the code
editor and the Expression Lab will expand the appropriate nodes automatically, then select the part of the tree that
represents the selected piece of code.

On the right side of the window, you can see the grid with the properties of the selected language element. The grid,
containing the properties, can be categorized, either where properties are grouped by its categories, or listed alphabet-
ically as a plain list. To toggle the view, click the corresponding button above the grid. On top of the properties grid,
you can see the element type of the selected language element. Under the grid, you can see the name of the property
and its description.

The toolbar has several buttons that toggle different options of the Expression Lab window. Here they are:

Icon Button Description

 Show/hide property grid Toggles the visibility of the properties grid on the right part of the tool
window.

 Show Comments Toggles the visibility of the parsed code comments in the hierarchical
source tree.

 Show XML Doc Comments Toggles the visibility of the parsed XML Doc comments in the hierar-
chical source tree.

 Show Attributes Toggles the visibility of the parsed code attributes in the hierarchical
source tree.

586

 Show detail nodes Toggles the visibility of the detail nodes. Details nodes are language
elements that do not represent the body of an element but its import-
ant characteristics. For example, if you have a conditional statement,
its expression is a detail node, and its content is represented by
language element nodes. Detail nodes are rendered with blue text in
the tree.

 Select code on click Toggles the ability to select the source code inside the code editor
when you click on the nodes of the hierarchical source tree.

 Track Caret Toggles the ability to expand the hierarchical source tree nodes auto-
matically once the editor caret position is changed.

 Validate parse tree Validates the hierarchical source tree for corrupted nodes. Shows a
message box with the results of the validation.

And, the last capability for this window is that you can check how much memory is allocated to any part of the hier-
archical source tree. To check that, click the Enabled checkbox below the source tree near the Memory Used label,
and you will see the amount of memory used to store language elements for the selected part of the source tree.

Also, there is the RunExpressionLab action, to show the tool window using the keyboard shortcut. By default, this
action is not bound to any shortcut. You can do this yourself if you plan to use the Expression Lab window while
developing DXCore plug-ins.

How to enumerate solution and source code items

One of the trivial tasks when developing a DXCore plug-in is the enumeration of the active solution items, such as
projects, source files, then interfaces, classes, methods, properties, statements, etc. A similar task is to get an active
element (in other words, the element where the editor caret is located) inside the active source file to start working
with one.

All of the items of the solution are represented by the DXCore classes, located in the “DevExpress.DXCore.Parser”
assembly inside the “DevExpress.CodeRush.StructuralParser” namespace. Consider, we have a standard Visual Stu-
dio solution, DXCore uses the following classes to represent its hierarchy:

Class Name Description
SolutionElement Represents a Visual Studio solution.
ProjectElement Represents a Visual Studio project. Holds a list of all files belonging to the project.
SourceFile Represents a file (source code, resource file, bitmap file, XML page, HTML page, etc).

All elements of the file, containing source code, are parsed as DXCore abstract source tree structure, maintained by
the language elements. These are the most often used elements inside a source code file:

Class Name Description
Namespace Represents a namespace declaration, e.g. “namespace N { }” (C#),

“Namespace N … End Namespace” (VB).
NamespaceReference e.g. “using System;” (C#), “Imports System” (VB)
Class, Struct, Interface, Enumeration These are different kinds of type declarations.
Method, Property, Event, Variable These are different kinds of type member declarations.

587

Hundreds of the elements consisting
of statements and expressions, such
as: For, ForEach, If, Return, Throw,
ElementReferenceExpression, TypeRef-
erenceExpression, PrimitiveExpression

These are different kinds of code blocks inside members.

To get an element of the solution, use the SourceModel DXCore service; it has numerous properties to work with the
solution and code structure, such as: ActiveSolution, ActiveProject, ActiveClass, ActiveMethod, ActiveProperty, etc.
For example, let’s count the number of properties and constants declared inside the entire solution. Here’s a sample
code:

CSharp code:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

void DoCount()

{

 int propertiesCount = 0;

 int constantsCount = 0;

 SolutionElement activeSolution = CodeRush.Source.ActiveSolution;

 foreach (ProjectElement project in activeSolution.AllProjects)

 foreach (SourceFile sourceFile in project.AllFiles)

 foreach (TypeDeclaration typeDeclaration in sourceFile.AllTypes)

 {

 foreach (Property property in typeDeclaration.AllProperties)

 propertiesCount++;

 foreach (Const constant in typeDeclaration.AllConstants)

 constantsCount++;

 }

 Console.WriteLine(«Number of properties inside solution: « + proper-
tiesCount);

 Console.WriteLine(«Number of constants inside solution: « + con-
stantsCount);

}

As you can see, we get an instance of the active solution, then enumerating over all of its projects, then all files of all
projects, then all types of all files and, finally, the members we need – properties and constants. Bear in mind, that if
there’s no solution opened, the ActiveSolution will return null (C#) or Nothing(VB).

588

For enumerating inner code blocks of members, there are properties like AllStatements, AllExpressions, AllVari-
able on the instance of a member language element. But these properties might be not enough if you would like to
enumerate every piece of the code inside member in detail. To enumerate everything, you can use the Nodes and De-
tailNodes properties of the particular language element. Nodes property contains high-level root elements like
statements and the DetailNodes property contains granular details specific to this particular element. For example, let
take a look at this ‘for’ loop in CSharp:

1

2

3

4

5

6

for (int i = 0; i < 100; i++)

{

 Console.WriteLine(i);

 if (i > 50)

 break;

}

The Nodes property will contain two items:

•	 Language element named “MethodCall” – “Console.Write(i);”.

•	 Language element named “If” – “if (i < 50) break;”

The DetailNodes property, in turn, will contain three items:

•	 Language element named “InitializedVariable” – “int i = 0;”

•	 Language element named “RelationalOperation” – “i < 100;”

•	 Language element named “UnaryIncrement” – “i++”.

To better understand the difference between Nodes and DetailNodes properties, use the Expression Lab tool window
available via DevExpress | Tool Windows | Diagnostics | Expression Lab menu item. Here is what the ‘for’ loop
language element looks like inside this tool window:

589

The other way to enumerate elements inside of a scope is to use the ElementEnumerable class, declared in the “Dev-
Express.DXCore.Parser” assembly. It may take one, two or three parameters, such as:

•	 The Scope – the LanguageElement instance inside of which you are going to enumerate inner
elements, for example, a SourceFile or a Method instance.

•	 The optional Type of the inner elements parameter or a specific IElementFilter interface
descendant. The “Type” parameter can be specified by the LanguageElementType enumeration (e.g. Lan-
guageElementType.Comment) or a System.Type instance. For example:

CSharp code:

1

2

3

Class activeClass = CodeRush.Source.ActiveClass;

ElementEnumerable xmlCommentsEnumerable = new ElementEnumerable(active-
Class, LanguageElementType.XmlDocComment);

ElementEnumerable throwExceptionsEnumerable = new ElementEnumerable(ac-
tiveClass, typeof(Throw));

You are also able to pass an array of the LanguageElementType or System.Type instances.

590

The IElementFilter descendant allows you to specify more conditions for the element than just its type which
specifies whether a particular element will be returned during an enumeration process. There are two methods on
the IElementFilter interface to implement: Apply and SkipChildren.

The Apply method returns the value, which specifies whether the element will be returned when enumerating the
scope. The SkipChildren specifies whether the enumerator should look inside the element that is passed the Ap-
ply procedure, or move on to the next element skipping its nodes. For example, here’s the code of the filter that looks
for the field members with the name starting with an underscore “_”:

CSharp code:

01

02

03

04

05

06

07

08

09

10

11

public class FildsWithUnderscoreFilter : IElementFilter

{

 public bool Apply(IElement element)

 {

 return element is IFieldElement && element.Name.StartsWith(“_”);

 }

 public bool SkipChildren(IElement element)

 {

 return true;

 }

}
There is also the DefaultElementFilters class, defined with a few default element filters, such as TypeOrName-
space filter, NonPrivateMember, etc.

•	 The third optional parameter is the “UseRecursion” boolean parameter, which specifies whether
the enumeration search should be performed recursively.

Conclusion

Enumeration of the solution and code blocks elements is one of the basic tasks for DXCore plug-in, which allows
you to select elements to begin work with. Any consequent task, such as modifying elements, navigating to elements
almost always needs to get list of an active or specific elements to start working with. Getting an active element
allows you to define the condition whether a particular feature should be available, for example. E.g. the IsNullOr-
WhiteSpace contract provider needs to check if the active element is a Parameter element instance, and if it is not
a Parameter, then it is not available.

How to parse source code using the DXCore integrated code parsers

There are times when you need to parse specific source files or blocks of code. Obviously, the DXCore Frame-
work has many built-in parsers for various programming languages. They can be used inside the Visual Studio
environment, or outside an IDE in any other application type, such as a Console App, for example. Later, this kind of
app (a Console App) can be used in the project building process for code validation, code clean-up, automatic refac-
toring and any other task.

591

Let’s see how can we parse the code inside a DXCore plug-in when it is loaded into the Visual Studio IDE. Here, we
can use the Language and the Source Model DXCore services with several APIs specific for the parsing of the code:

•	 Parsing of the files outside Visual Studio:

CodeRush.Language.Parse(“FileNameGoesHere”) – parses the specified source file on disk and returns the
LanguageElement that specifies it (most likely, a SourceFile instance).

•	 Parsing of the opened text documents (opened source files):

ParseActiveDocument, Parse(TextDocument) or ParseDocument(TextDocument) (from the Language DXCore ser-
vice) – parses the specified text document (an opened source file) and returns the LanguageElement that specifies it
(a SourceFile instance).

ParseIfTextChanged (from the SourceModel DXCore service) – parses the active or the specified document if the
text has been changed (but not necessarily committed) since the last parse. Plug-in authors can call this method to
ensure that the DXCore structural image is in sync with the file. For example, you might call this immediately after
some text edits.

•	 Specific parsing methods from the Language service:

ParseExpression – parses an expression from the given string.

ParseString – parses the specified string and returns the LanguageElement that specifies it.

ParseTypeReferenceExpression – parses a type reference expression from the given string.

•	 Other Parse method overloads:

These take additional parameters, such as ParserContext, RegionDirective, CompilerDirective, SourceRange, Text-
StringCollection, etc. – these methods parse the specified source range of the given text document with the given
context, and returns the LanguageElement that specifies it. Nodes parsed in the specified range will be appended to
the end of the context’s nodes. Does not trigger the BeforeParse or AfterParse events, nor does this method call Bind-
ToCode – the calling client code must do that (this allows the calling code to bind only the nodes within the parse
range, and also append any trailing nodes to the end of the newly-parsed nodes).

For example, let’s imagine we’re going to release an open source project, but it is required to clean-up the source files
from the comments. Here’s a sample on how to achieve this for a specific file:

592

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

string fileName = “FileNameGoesHere”;

SourceFile parsedFile = CodeRush.Language.Parse(fileName) as SourceFile;

if (parsedFile != null)

{

 CleanUpFromComments(parsedFile);

}

// ...

/// <summary>

/// Removes all comments from the given file. Uses DXCore element enumer-
ations methods and the DXCore File service to change the file.

/// </summary>

/// <param name=”parsedFile”>The file to clean-up.</param>

private void CleanUpFromComments(SourceFile parsedFile)

{

 LanguageElementType[] commentTypes = new LanguageElementType[] { Lan-
guageElementType.Comment, LanguageElementType.XmlDocComment };

 ElementEnumerable elementEnumerable = new ElementEnumerable(parsedFile,
commentTypes, true);

 FileChangeCollection fileChanges = new FileChangeCollection();

 foreach (LanguageElement comment in elementEnumerable)

 fileChanges.Add(new FileChange(parsedFile.FilePath, comment.Range,
String.Empty));

 CodeRush.File.ApplyChanges(fileChanges);

}

Don’t forget, that you can also use the DXCore standalone parser assembly (DevExpress.DXCore.Parser.dll), to
parse the source code outside Visual Studio. Here’s a sample above, corrected for using the DXCore parsers in any
type of application:

593

01

02

03

04

05

06

07

08

09

10

11

string fileName = “FileNameGoesHere”;

string extension = Path.GetExtension(fileName);

ParserBase parser = ParserFactory.CreateParserForFileExtension(exten-
sion);

if (parser != null)

{

 SourceFile parsedFile = parser.ParseFile(fileName) as SourceFile;

 if (parsedFile != null)

 {

 CleanUpFromComments(parsedFile);

 }

}

However, we can’t use DXCore services outside Visual Studio. So, in the sample above, the File service won’t be
available for modification of files. We will use another technique in this case – for example, directly change the text
of the file.

There are two DXCore plug-ins for the CSharp and Visual Basic languages, and two Windows Forms Applica-
tions for the same languages are attached as a sample. The Windows Forms Application projects uses a different
mechanism for changing files, you are welcome to use any algorithm by your preference.

Source code and source tree elements coordinate inside source files

Inside Visual Studio IDE, the source code text has its coordinates: the line number and the column:

These coordinates are 1-based, and the first line has an index equal to 1. These values can be seen in the right bottom
corner of the IDE:

594

•	 “Ln” is the line number

•	 “Col” is the column number (offset position)

•	 “Ch” is the character position (for example, a single ‘Tab’ character can take several columns)

After DXCore automatically parses a source file, the abstract source tree is built for the entire file. Language elements
have the same coordinates that correspond to the text coordinates inside of the source file. The coordinates of the
language element are accessible through its properties, e.g.:

•	 StartLine - the starting line of a language element

•	 StartOffset – the starting offset (column) of a language element

•	 EndLine – the end line of a language element

•	 EndOffset – the end offset (column) of a language element

For example, this line of CSharp code:

1 using System;
Has the following coordinates in Visual Studio:

and

595

The language element can be located on several lines, e.g. a Class element most likely will have different starting
and ending lines. These four numbers are encapsulated into a single property of the LanguageElement called Range,
which has a type of the SourceRange structure. The SourceRange may consist of four coordinates: starting line,
starting offset, ending line, ending offset, or may consist of two others of the SourcePoint type, which represent the
starting point (1,1) and the end point (1,14). So, the SourcePoint contains a single pair of a line/offset values:

1 SourceRange(int startLine, int startOffset, int endLine, int endOffset)

is the equivalent of:

1 SourceRange(new SourcePoint (startLine, startOffset), new SourcePoint(end-
Line, endOffset))

The range and the stating/ending point properties are useful to manipulate the text of the source file. You can replace
the piece of code using the SourceRange value of the element, or insert some new code before or after an element
using the Start or End SourcePoint values available thought the Range property:

1

2

3

SourceRange elementRange = LanguageElement.Range;

SourcePoint elementStartPoint = LanguageElement.Range.Start;

SourcePoint elementEndPoint = LanguageElement.Range.End;

For example, let’s use these properties to remove, and then insert some text:

1

2

3

4

5

6

;TextDocument activeTextDocument = CodeRush.Documents.ActiveTextDocument

(if (activeTextDocument != null

}

;(activeTextDocument.DeleteText(elementRange

 activeTextDocument.InsertText(elementStartPoint, «/* LanguageElement
;(«/* .was here

{

Now, let’s observe useful APIs dealing with the source ranges and source point properties. On the LanguageEle-
ment instance there are the following properties and methods:

Name Description
Range The source range of this language element.

596

NameRange The source range of the name of this language element.
GetCutRange() Gets a SourceRange that includes leading and trailing white spaces. This

method is useful for cutting, deleting or moving this LanguageElement, as
this expanded SourceRange tends to produce a clean break in the code when
removed.

GetFullBlockCoordinates() Gets the full block coordinates for this language element. “Full block” is
defined as this element and any partnering elements that complete this block
(or that this block completes), including attributes, XML Doc Comments,
and regions that tightly enclose this block. The coordinates may extend
beyond the bounds of this particular language element.

GetFullBlockCutRange() Gets a SourceRange that includes partnering elements, leading and trailing
white spaces. Partnering elements are neighboring elements that complete
this block (or that this element completes), and include attributes, XML Doc
Comments, and regions that tightly enclose this block. This method is useful
for cutting, deleting or moving this LanguageElement, as this expanded
SourceRange tends to produce a clean break in the code when removed.

GetFullBlockRange() Gets the full block range for this language element. “Full block” is defined
as this element and any partnering elements that complete this block (or
that this block completes), including attributes, XML Doc Comments, and
regions that tightly enclose this block. The coordinates may extend beyond
the bounds of this particular language element.

The three similar methods: GetFullBlockRange, GetFullBlockCutRange and GetFullBlockCoordinates can take
a parameter of type BlockElements, which specify what elements should be included into the resulting range.
The BlockElement is a flagged enumeration, containing these elements:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

[Flags]

public enum BlockElements

{

 All,

 AllLeadingWhiteSpaces,

 AllSupportElements,

 AllTrailingWhiteSpaces,

 AllWhiteSpaces,

 Attributes,

 LeadingEmptyLines,

 LeadingWhiteSpace,

 None,

 Region,

 SupportComments,

 TrailingEmptyLines,

 TrailingWhiteSpace,

 WithoutUnsuitableRegions,

 XmlDocComments

}

597

Here’s a brief overview of this enumeration:

Name Description
All .Inlude everything: regions, comments, white space, etc
AllLeadingWhiteSpaces Leading white space and leading empty lines
AllSupportElements Support elements are: attributes, comments, xml doc comments
AllTrailingWhiteSpaces Trailing white space and trailing empty lines
AllWhiteSpaces Leading and trailing white spaces
Attributes (Attributes attached to an element (e.g. to a method or property
LeadingEmptyLines Empty leading lines
LeadingWhiteSpace Leading white space
None Nothing except the language element itself
Region Region directives, e.g. #region … #end region
SupportComments Comments attached to a language element
TrailingEmptyLines Empty trailing lines
TrailingWhiteSpace Trailing white space
WithoutUnsuitableRegions Unsuitable regions are regions with a caption that is not equal to the element’s

name
XmlDocComments Xml doc comments which describe a member or type declaration

Here are a few sample results of the above APIs for the following code:

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22

class Program
{

 // private fields...

 #region Main

 /// <summary>

 /// The entry point.

 /// </summary>

 /// <param name=»args»>Arguments.</param>

 [ThreadStatic]

 static void Main(string[] args)
 {

 Args = args;

 if (args != null)
 ArgsLength = args.Length;

 }

 #endregion

 // public properties...

 public static int ArgsLength { get; set; }
 public static string[] Args { get; set; }
}

These are the results for the Main function:

598

•	 Range:

•	 NameRange:

599

•	 GetCutRange():

•	 GetFullBlockRange():

600

•	 GetFullBlockRange(BlockElements.Attributes | BlockElements.XmlDocComments):

•	 GetFullBlockCutRange():

601

Your feedback is much appreciated. Let me know if I can improve this article for better understanding of the source
code coordinates.

How to edit source files of an entire Visual Studio solution

Usually, simple edits of text files are accomplished using the TextDocument object, which represents an open source
file inside the IDE. The text document object is easy to access through the Documents DXCore service. It has lots
of useful methods for editing a text like InsertText, DeleteText and SetText, which take a source code coordinates and
a new text for replacement as a parameters. However, to use a text document object, it is required for the file to be
opened inside the Visual Studio environment. If a file is closed, there’s no TextDocument object assigned to the file
and you simply can’t use its methods. In case you are going to edit closed and/or multiple files, there’s a better way –
the FileChange object (in the DevExpress.CodeRush.Core.Replacement namespace).

As the name says, the FileChange object represents a single change to a file. A file can be closed inside IDE and not
even included into a project, so you can change any text file in your system. The object takes a few parameters:

•	 a path to a file

•	 a source range or a source point

•	 a text for insertion or replacement

If you pass a source point – the specified text will be inserted at the specified position. But if you pass a source range
– the text inside a file will be replaced with the new one. The FileChange class has the corresponding properties:

Property Description
Data Data, associated with a change. Used internally.
Order The order of this change in a particular file. The value is set automatically. However, if several

changes are made at the same position, you can set this property to manage the order the changes
are applied.

Path A full path to a file.
Range A source range of the text inside a file for replacement. If a source range has two equal source

points, the text will be inserted without deletion.
Text A new text to insert or replace inside a file.

The file change object should be added into a special collection to be applied – the FileChangeCollection. Then, you
can apply a collection of file changes by using the File DXCore service:

CodeRush.File.ApplyChanges(collection);

Note, if you have only a single file change, you can call the CodeRush.File.ChangeFile method instead of creating a
new FileChange object. The ChangeFile method inserts, deletes or replaces the text inside the specified source file.

Usage sample

As an example, illustrating how to edit source files, let’s create a new DXCore plug-in, and add the Action DXCore
control, that will modify all files of the current project by inserting a file header at the top (as a comment), if it doesn’t
exist.

When the action is executed, we get the current project instance and enumerate all of its files. We check the name of
every file, so it has a valid extension and it is not a designer file, nor should it already contain a header. If the file is
OK, then we create a new FileChange object, specify the path to a file, a new insertion point (1,1), a file header text)
and add it to a collection of file changes. When all files are enumerated, we apply the collection, so all files of the

602

project now have a file header. Here’s the code of the plug-in:
public partial class PlugIn1 : StandardPlugIn
{

 private const string HEADER =
@”//---

// <copyright file=””{0}”” company=””My Company””>

// Copyright (c) My Company, Inc. All rights reserved.

// </copyright>

//---

“;

 private void action1_Execute(ExecuteEventArgs ea)
 {

 ProjectElement activeProject = CodeRush.Source.ActiveProject;

 if (activeProject == null)
 return;

 FileChangeCollection fileChangeCollection = new FileChangeCollection();
 foreach (SourceFile sourceFile in activeProject.AllFiles)
 {

 if (!IsValidFile(sourceFile))
 continue;

 if (ContainsFileHeader(sourceFile))
 continue;

 string filePathAndName = sourceFile.Name;
 SourcePoint insertionPoint = new SourcePoint(1, 1);
 string newHeader = String.Format(HEADER, Path.GetFileName(filePathAnd-Name));

 FileChange fileChange = new FileChange(filePathAndName, insertionPoint, ne-wHeader);

 fileChangeCollection.Add(fileChange);

 }

 CodeRush.File.ApplyChanges(fileChangeCollection);

 }

 private bool IsValidFile(SourceFile sourceFile)
 {

 const string EXT = “.CS”;
 const string DESIGNER = “.DESIGNER”;

 string fileNameWithoutExtension = Path.GetFileNameWithoutExtension(source-File.Name);

 if (Path.GetExtension(fileNameWithoutExtension).ToUpper() == DESIGNER)
 return false;

 string fileExtension = Path.GetExtension(sourceFile.Name);

603

 return fileExtension.ToUpper() == EXT;
 }

 private bool ContainsFileHeader(SourceFile sourceFile)
 {

 LanguageElement firstChild = sourceFile.FirstChild;

 return firstChild is Comment;
 }

}

How to use DXCore in a Console App outside of Visual Studio

Actually, DXCore is not designed to be used outside of Visual Studio, but there are always workarounds… In this
article I’m going to show you how to use the DXCore Framework inside the regular C# Console Application to
parse an entire solution and work with the abstract parsed tree. The solution should be passed-in as an argument to the
program as a full complete path to the *.sln file. If there’s no argument used, the hard-coded path to the test program
is used, so the program will parse itself and print information about the solution, such as a list of all types used and
the number of members inside of each class.

Let’s create a new C# Console Application, call it TestDXCoreConsoleApp and save it inside the “C:\Project” folder:

Then, we should change the Target Framework version of the new project to Framework 4.0, so it’s not a “Target
Framework 4.0 Client Profile”, because some required assembly references don’t support this version of the Target
Framework:

604

Now, let add required assembly references. Here’s the list of what we need:

1) DXCore assemblies:

•	 DevExpress.CodeRush.Common

•	 DevExpress.CodeRush.Core

•	 DevExpress.CodeRush.StructuralParser

•	 DevExpress.CodeRush.VSCore

•	 DevExpress.DXCore.AssemblyResolver

•	 DevExpress.DXCore.Parser

These assemblies canbe found inside your DevExpress IDE Tools installation folder. For example, the path may look
like this:

C:\Program Files\DevExpress 2011.1\IDETools\System\DXCore\BIN

2) Now, three additional assemblies for different program language support:

•	 DX_CPPLanguage

•	 DX_CSharpLanguage

•	 DX_VBLanguage

With these assemblies we are able to parse CSharp, Visual Basic and C++ projects. They can be found here:

C:\Program Files (x86)\DevExpress 2011.1\IDETools\System\DXCore\BIN\SYSTEM

3) .NET Framework assemblies:

•	 Microsoft.Build.BuildEngine.dll

605

4) And, finally, a couple of Visual Studio assemblies:

•	 EnvDTE

•	 VsLangProj

These two can be found in the “PublicAssemblies” folder:

C:\Program Files (x86)\Microsoft Visual Studio 10.0\Common7\IDE\PublicAssemblies\

Now, the DXCore support code. This code is required to load a solution, its projects and initialize DXCore parsers.
I’ve added two folders:

1) The Helpers folder contains the following classes:

•	 LanguageHelper.cs – detects the language of projects (e.g. CSharp, Visual Basic or C++).

•	 ParserHelper.cs – initializes DXCore parsers, and a few important DXCore services – the Source
Model service and the Language service which are used to parse source code.

•	 SolutionParser.cs – a helper class, which takes the path to the solution that you are going to parse.
Calling the GetParsedSolution method will return the SolutionElement, which holds the abstract source
tree of the entire solution.

2) The Loaders folder contains the Visual Studio project and solution loaders for different Visual Studio versions.
They are used to parse *.XXproj and *.sln files. There are versions for VS2002, VS2003 and VS2005. There are no
dedicated loaders for VS2008 and VS2010, because those loaders for the old VS versions are perfectly fine to reading
and loading newer Visual Studio project and solution format files (e.g. 2008, 2010).

Here’s the final structure of the TestDXCoreConsoleApp:

606

The TestDXCoreConsoleApp with the full source is attached (267,457 bytes, C#, VS2010), so you may review the
code and use it as you’d like. Here’s the Main function of the Program class:
static void Main(string[] args)
{

 string SolutionPath;
 if (args != null && args.Length > 0)
 SolutionPath = args[0];

 else

 SolutionPath = @»c:\Projects\TestDXCoreConsoleApp\TestDXCoreConsoleApp.sln»;

 try
 {

607

 ParserHelper.RegisterParserServices();

 Console.Write(«Parsing solution... «);

 SolutionParser solutionParser = new SolutionParser(SolutionPath);
 SolutionElement solution = solutionParser.GetParsedSolution();

 if (solution == null)
 return;

 Console.WriteLine(«Done.»);

 foreach (ProjectElement project in solution.AllProjects)
 foreach (SourceFile file in project.AllFiles)
 foreach (TypeDeclaration type in file.AllTypes)
 {

 Console.Write(type.FullName);

 Console.WriteLine(«, members: « + ((ITypeElement)type).Members.Count);

 }

 }

 catch (Exception ex)
 {

 Console.WriteLine(ex.Message);

 }

 finally

 {

 ParserHelper.UnRegisterParserServices();

 }

 Console.ReadLine();

}

 If you put the sources into the “C:\Projects” folder and run the program without any arguments specified, you should
see the following result:

608

Press the Enter key to close the window. Bear in mind, that the parsing process may take some time, so you might
need to wait a few seconds, until the entire solution is parsed. Let me know if you have any difficulties with compil-
ing the sources.

DevExpress DXCore controls overview

DXCore contains uniquely-named duplicates (to avoid naming collision and other design-time issues) of most
of DevExpress controls. These controls are located in the “DevExpress.DXCore.Controls.*” assemblies. They can be
used when writing DXCore plug-ins only. It is impossible to use these controls in an arbitrary application. You need
the DXCore design-time assemblies to be able to use these components at design time. However, these assemblies
are only available for customers who have a DXperience Subscription (customers who have already paid for the
design-time portion for the corresponding controls in DXCore).

Also, there are several other DXCore-specific components added into your Visual Studio toolbox, which you can use
inside your DXCore based plug-ins.

DXCore components and controls list

DXCore has several components added into your Visual Studio toolbox, which you can use inside your DXCore
based plug-ins. These components are divided into the following categories:

•	 Commands

•	 Events

•	 Extensions

•	 Providers

•	 User Assistance/Interaction

•	 Visual Controls

Here they are in detail (the icon (a green tick or a red cross) on the last column in all tables specifies whether this
control appears on the Visual Studio toolbox):

•	 Commands

Name Description

Action Registers an action with DXCore/CodeRush and the Visual Studio IDE. Actions can
be bound to keystrokes.

Text Command TextCommands move the editor caret, insert, remove, or change code, and bring up a
UI for powerful, intelligent and potentially interactive code creation.

•	 Events

Name Description

DXCore Events Provides access to a host of Visual Studio andDXCore/CodeRush events. StandardPl
ugIn descends from this class and inherits its events.

•	 Extensions

609

Name Description

Duplicate Line Participates in the CodeRush Duplicate Line feature, providing intelligent custom
suggestions based on the context.

Intellassist Participates in the CodeRush Intellassist feature, providing intelligent custom suggest-
tions based on the context.

Language Registers support for a programming language, implementing a parser that generates a
source tree of DXCore language elements.

Selection
Inversion

Adds custom intelligent selection inversions that can be applied to the selected code.

Intelligent Paste Adds custom Intelligent Paste expansion based on the context.

•	 Providers

Name Description

Code Provides a particular code operation which can change your code in any way, depend-
ing on the context.

Code Metric Calculates and returns a code metric used in the Metrics tool window of Refactor!
Pro.

Context Provides a context entry which users can bind to shortcuts, code templates and other
CodeRush solutions. Context determines if a feature is appropriate for use.

Contract Provides a code contract used in the Add Contract provider, which checks conditions
for method parameters.

Dynamic List Returns a collection of Dynamic Lists used in the CodeRush Templates Engine.

Issue Provides a particular code issue check, which verifies the source code.

Navigation Provides a particular navigation action, which performs navigation inside of the source
code.

Refactoring Provides a particular code refactoring operation, which can improve your source code
without changing its logic in the definite context.

Search Returns a custom searcher used in the Rename refactoring or Tab to Next Refer-
ence navigation feature.

Smart Tag Provides a custom smart tag item used in the IDE context menu or in the Refactor!
popup menu.

String Returns a string based on state, context, and/or parameters passed to this provid-
er. String providers can be used in templates, text expansion, intelligent paste, and a
number of other CodeRushfeatures.

Tutorial Content Returns a section of HTML for displaying in the DXCore User Guide.

Tutorial Page Returns an entire HTML page, and registers it, so it appears in the topic tree of
the DXCore User Guide.

Unit Test Provides support for custom testing engines used in the CodeRush Unit Test Runner.

•	 User Assistance/Interaction

Name Description

610

Action Hint Points to a location on screen with a large colored arrow, displaying a short text mes-
sage. Action hints inform new users about IDE tools features, as they occur.

Animated Arrow A descendant of the AnimationFrame, this control will animate an arrow that moves
from one location in the source code to another. This animation is useful for illustrat-
ing relationships between bits of code.

Animation
Frame

Animates on the code editor, the form designer, or just about any part of Visual Studio.

Big Feedback Shows a custom feedback message (also known as Billboard Message) on the entire
code editor surface.

Big Hint Shows a customizable hint with a title and specific information.

Code View Shows a syntax highlighted code preview window, useful for showing result code of
any code changing operation.

Reorder Selector An interactive selector specified for the reordering of elements in the code editor.

Locator Beacon A descendant of the AnimationFrame, this control will animate a locator beacon
anywhere you need one in Visual Studio.

Shortcuts Hint Shows a help hint with a table of available shortcut keys in the current context for the
particular interactive feature.

SourceRange
Highlight

A descendant of the AnimationFrame, this control will highlight a section of code.

Target Picker A code location picker used for specifying the target location.

Text Change
Selector

An interactive dialog used for several code changing operations. Allows you to apply
a single change, apply all changes, skip, or suppress and then resume code changing
operations.

•	 Visual Controls

Name Description

Color Swatch A color picker used for choosing a color.

Context Picker Allows users to specify sophisticated context expressions.

LedLight A small icon used for indicating a particular state using different colors.

LedLightLabel A small icon with a text used for indicating a particular state using different colors.

Source Tree Shows a full source tree of DXCore language elements of a specific parsed source file.

DXCore Components – Action

The Action component is one of the primary, simplest and useful components of the DXCore. It registers an “action”
within DXCore/CodeRush and the Visual Studio IDE, which can be triggered using either a keyboard shortcut or a
mouse button (with the shift key if necessary), and/or placed within a Visual Studio menu (e.g. in the IDE main menu,
Code Editor context menu, etc).

You can drop it onto your plug-in design surface from the “DXCore” category of Visual Studio Toolbox:

611

It’s not a visual control, all you need is to tweak its properties and subscribe to its events. Here’s the Properties win-
dow, containing available properties, their categories and default values:

612

and the Events list:

The Action component is located in the “DevExpress.CodeRush.Core” assembly. It is derived from the “System.
ComponentModel.Component” class:

Here’s a list of properties in alphabetical order, without base class (Component) standard properties:

Property name Description
ActionName The name of the action displayed in the IDE Tools UI.
ButtonText Text for buttons and menu items associated with this action.
CommonMenu Visual Studio common menu enumeration, e.g. “File”, “Edit”, “View”, etc.
Description A hint associated with this action, describing this action.
Enabled Sets the enabled state for this action in the current context. You can change this property in

a BeforeQueryStatus event handler.
GroupName The name of the action group.
Image Sets the bitmap image for this action. Action images are optional, but can be useful for

menu items and toolbar buttons inside the IDE.
ImageBackColor Sets the image background color for this action. It is used to determine which color is to

be treated as transparent in the bitmap assigned to the Image property.
Invisible Sets the visibility for this action.
Latched Sets the latched (e.g., selected or checked) state for this action in the current context. You

can change this property in a BeforeQueryStatus event handler.
Ninched Sets the indeterminate state (neither checked nor cleared) for this action in the current

context. You can change this property in a BeforeQueryStatus event handler.
Parameters A collection of expected parameters for this action. Optional.

613

ParentMenu Sets the name of the parenting command bar. If you want to create a menu item for this
action, specify the name of the parenting command bar here (e.g., “Tools”). ParentMenu is
an alternative to CommonMenu. Use the name of any menu you know of, to place the
action on it, rather than one of “common” ones.

Position Sets the position for this action in the specified ParentMenu. The first position is one. If
you specify zero for this value, the item will be appended to the end of the menu. If you
specify a negative number, the menu item position will be calculated from the end of the
menu (e.g., if Position equals -1, then this menu item will be inserted before the last entry).

RegisterInCR Registers this action with DXCore. If false, this action may still be available in the Visual
Studio Options dialog on the Keyboard page. If you want to place this action in a menu
or on a command bar, then you must set this property to true. If true, you can bind a key-
stroke to this command in the IDE Tools Options dialog on theShortcuts options page.

RegisterInVS Registers this action as a Visual Studio command. If false, you can still bind a keystroke to
this action in the IDE tools Options dialogon the Shortcuts page. If true, this action will be
available in the Visual Studio Options dialog on the Keyboard page. If you want to place
this action in a menu or on a command bar, then you must set this property to true.

RegisterMenuButton Registers this menu button for a Visual Studio command. It works only if option Register-
InVS is set to true.

Supported Indicates if this action is supported in the current context. You can change this property in
a BeforeQueryStatus event handler.

ToolbarItem An instance of the “DevExpress.CodeRush.Core.ToolbarAction” object that allows you
to add this action to the DXCore Visualize toolbar. The ToolbarAction object has the
following properties: “BeginGroup”, “ButtonIsPressed”, “Caption”, “Image”, “Index”,
“PlaceIntoToolbar”.

UserFeatureUI Show Feature UI before executing this action.
VisibleToUsers If true, this Action will be visible to users, and will appear in the command list on

the Shortcuts options page, and will also be documented in the User Guide. Setting this
property to false will prevent this Action from appearing in the command list. However,
bindings to this Action can still be established by typing in the Action name.

Events:

Event name Description
BeforeQueryStatus Occurs when the IDE requests the status of the action.
CheckAvailability Checks the availability of this action in the current context.
Execute Occurs when this action is executed. Fired whenever the assigned shortcut is triggered or

the representative menu item is chosen.
PositionMenuButton Occurs when the menu button for this action is being positioned within its parent menu or

toolbar. Handling this, allows precise positioning of the menu button.
QueryStatus Occurs before an action is accessed (displayed). This enables properties of this action to

be set in the event handler before it reaches the user.
ShowHelp Occurs before this action is being executed to notify the user about the action.

How to use Action DXCore control

There are only four important things to make the Action component available and working:

1. Create a new DXCore plug-in if you haven’t done it yet

614

2. Drop the Action control on the plug-in designer surface

3. Fill the ActionName property

4. Handle the Execute event

That’s it. Using the ActionName you are able to assign a shortcut key, and once it’s pressed, the Execute event will
do its job – perform the code you added into the event handler.

To make Action available inside the Visual Studio’s menu fill the following properties:

•	 ButtonText – the caption of the new button

•	 CommonMenu – the parent menu where the new button will reside

•	 Position – the position inside of the parent menu

Here is the code of the Execute event handler:

CSharp code:

private void action1_Execute(ExecuteEventArgs ea)

615

{

 MessageBox.Show(«This is MyButton from the DevExpress menu.»);

}

Next, compile the plug-in

•	 Open a new instance of the Visual Studio IDE

•	 Load IDE tools if they’re not loaded automatically

•	 Verify that the new button appeared inside the DevExpress menu:

Once you click the button inside of a menu or press the specified shortcut, your code inside of the Execute event
handler will be executed:

DXCore Components – CodeMetricProvider

The CodeMetricProvider component calculates and returns a code metric used in the Metrics tool window of Re-
factor! Pro and the Show Metrics CodeRush feature. See the “Show Metrics” post to learn more about software
metrics.

You can drop the CodeMetricProvider onto your plug-in design surface from the “DXCore: Extensions & Provid-
ers” category of Visual Studio Toolbox:

616

It’s not a visual control, all you need is to tweak its properties and subscribe to its events. Here’s the Properties win-
dow, containing available properties, their categories and default values:

and the Events list:

617

The CodeMetricProvider component is located in the “DevExpress.CodeRush.Extensions” assembly. It is derived
from the “DevExpress.CodeRush.Core.ProviderBase” class:

Here’s a list of properties in alphabetical order:

Property name Description
CalculateOption Specifies one of the two options: AfterParse or UserInvoked, which indicates the time when

the metric is being calculated – after solution parsing is done or manually by user request.
Description Text, describing the purpose or behavior of this plug-in extension. This text may appear inside

the User Guide, configuration UI, or theAbout box.
DisplayName The text name that identifies this extension. This text may appear inside the User Guide, con-

figuration UI, or the About box.
MetricGoal Specifies the value of three states: Default, Members or Types, indicating the objects for which

the metric is being calculated.
ProviderName The name of this provider.
Register If true, this extension will be available to the DXCore. Otherwise, it will be hidden.
WarningValue A threshold value indicating an excessively complex member when measured by this metric.

This value is used for graphing member metrics.
Events:

Event name Description
GetMetricComparer Handle this optional event to provide a comparer for the code metric provider. The compar-

er should contain implementation dependent operations for the code metric provider.

618

GetMetricValue Handle this event to calculate and return a code metric value for the given language ele-
ment.

IsValidMetric Handle this optional event to specify if it is appropriate to calculate a code metric for the
given language element.

LanguageSupported Handle this optional event if you want to restrict your code metric provider to one or more
programming languages. If you do not handle this event, the DXCoremakes your code
metric provider available in all programming languages.

How to use CodeMetricProvider control to build you own code metric

Let’s implement the Comment Density code metric using the CodeMetricProvider DXCore component. This code
metric provides the ratio of comment lines to all lines and indicates the comments coverage of your source code. We
are going to calculate it in percents for all type declarations like this:

Comment Density = (comment lines / code lines) * 100

The density of comments metric value will be between 0 and 100 percents, and can be used as a quality indicator
to see how much of the code is commented. So, if the comment density value for instance is below a certain value
defined by the project manager, it indicates that the code is under commented. Let’s assume that what’s recommended
is a commenting of at least 15% of the code and a maximum of 30%.

Follow these steps to get the CodeMetricProvider component working:

•	 Create a new DXCore plug-in if you haven’t done it yet

•	 Drop the CodeMetricProvider control on the plug-in designer surface

•	 Fill the ProviderName property of the CodeMetricProvider

•	 Fill the Description property of the CodeMetricProvider if needed

•	 Set the MetricGoal property to Types

619

•	 Then, subscribe to the GetMetricValue event:

CSharp code:

private void codeMetricProvider1_GetMetricValue(object sender, GetMetricVal-
ueEventArgs e)

{

}

Next, add a code for metric calculation into the GetMetricValue event handler:

CSharp code:

private void codeMetricProvider1_GetMetricValue(object sender, GetMetricVal-
ueEventArgs e)

{

 // determine if we are working with types...

 TypeDeclaration type = e.LanguageElement as TypeDeclaration;

 if (type == null)

 return;

 // counters...

 float typeCodeLines = type.Range.LineCount;

 float typeCommentLines = 0;

 // enumerating all comments in the given type...

 ElementEnumerable enumerable = new ElementEnumerable(type, LanguageElement-
Type.Comment, true);

 foreach (Comment comment in enumerable)

 typeCommentLines += comment.Range.LineCount;

 // return result...

 e.Value = (int)(typeCommentLines / typeCodeLines * 100);

}

That’s it.

620

•	 Compile the plug-in

•	 Open a new instance of the Visual Studio IDE

•	 Load IDE tools if they’re not loaded automatically

•	 Open any project and check how the new code metric works inside the Refactor! Metrics tool
window (DevExpress | Tool Windows | Metrics):

If you have any issues or need any further assistance, please post a comment here or contact DevExpress Support
Services.

DXCore components – Refactoring provider

The RefactoringProvider DXCore component provides a specific code refactoring operation, which can improve
your source code without changing its logic in a definite context.

You can drop the RefactoringProvider control onto your plug-in design surface from the “DXCore: Extensions &
Providers” category of Visual Studio Toolbox:

Here’s the Properties window, containing available properties, their categories and default values:

621

and the Events list:

622

The RefactoringProvider component is located in the “DevExpress.Refactor.Core” assembly. It is derived from the
“ContentProvider” base type from the “DevExpress.CodeRush.Core” assembly:

Here’s a list of properties in alphabetical order with descriptions:

Property name Description
ActionHintText Gets or sets the text that will be displayed in an action hint after this provider

is applied.
AutoActivate If true, this provider will be automatically activated while it is executing and

deactivated afterwards. If false, the provider needs to call theActivate and De-
activate methods of this provder at the appropriate times.

AutoUndo If true, an undo unit will automatically be created to collect all text chang-
es made by this provider during the Apply event. If false, the provider is
responsible for handling the undo stack itself.

CodeIssueMessage Set a unique string that connects this content provider to a particular code
issue. This string should also be passed to the ea.AddIssue() method, called
from the IssueProvider’s CheckCodeIssues event.

Description Text, describing the purpose or behavior of this plug-in extension. This text
may appear inside the User Guide, configuration UI, or the About box.

DisplayName The text name that identifies this extension. This text may appear inside
the User Guide, configuration UI, or the About box.

ExclusiveAvailabilityBehaviour Determines what will happen when the Refactor action is invoked without
parameters and this is the only provider available. Default behavior is to
immediately apply the provider. However for certain providers having
unexpected or potentially surprising side-effects, it may make more sense to
show the popup menu, which provides an opportunity to review the impact
(through the preview hint) before committing.

Image Sets the bitmap image for this smart tag item. Images are optional, but can be
useful for displaying in the context menu or the popup menu.

NeedsSelection If true, this content provider requires a selection to determine availability.
This is used by the Code Issues engine to select the range of the issue before
a check is made (through the CheckAvailability event) to see if this content
provider can provide a fix for the issue in question.

ProviderName The name of this provider.

623

Register If true, this extension will be available to the DXCore. Otherwise, it will be
hidden.

SupportsAsyncMode If true, the CheckAvailability event handler is performed on a separate thread,
instead of the main UI thread.

Events list:

Event name Description
Apply Occurs when the provider needs to be applied. Handle this event to apply this

provider to the currently existing code in the active text document. Note, that
this event will never fire if the provider is not available so code that checks
for provider availability is not necessary in a handler for this event.

Cancelled Occurs when this provider has been cancelled. Implement code that will
cancel this provider inside a handler for this event.

CheckAvailability Occurs when the availability of this provider in the current context is being
tested. Handle this event to indicate under what conditions this provider is
available or recommended.

GetAvailabilityContextString Occurs before the smart tag manager determines the command order based
on historic usage. If your provider has distinct states that you would like
separate entries for, handle this event and assign a unique string to the Con-
text property of the event arguments that represents the distinct state. For
example, the Inline Temp provider handles this event and sets the Context
property to “″1 when only one instance of the temporary variable exists.”

HidePreview Occurs when a menu item inside the popup menu is no longer highlighted.
This can happen when the user selects a different provider, when the user ex-
ecutes the selected provider, or when the popup menu closes. If you display
visual information in the PreparePreview event, you should also handle this
event to clean up the preview.

LanguageSupported Handle this optional event if you want to restrict your context to one or more
programming languages. If you do not handle this event, theDXCore makes
your context available in all programming languages.

PreparePreview Occurs when the user highlights this provider inside the popup menu. Handle
this optional event to display any additional visual information that can pre-
view the impact of this provider. If you handle this event, you should clean
up your preview in a HidePreview event handler.

SetUp Occurs immediately before the Apply event is fired. Handle this optional
event to perform any necessary setup before the provider is applied.

TearDown Occurs immediately after the Apply event is fired. Handle this optional event
to perform any necessary clean up after the provider is applied.

VisualStudioSupported Handle this optional event if you want to restrict your provider to one or
more Visual Studio versions. If you do not handle this event, your provider
will be available in any Visual Studio version.

Creating a simplest refactoring using the RefactoringProvider control

In this article we will create the simplest refactoring which will remove the active comment. Sometimes, there are
comments left that are not utilized any longer, such as implemented TO-DO comments, UNDONE comment that is
now complete, etc. We will use the RefactoringProvider control shipped inDevExpress Refactor! Pro for this purpose.

Here are the steps we need to perform:

624

1. Create a new DXCore plug-in
2. Drop the RefactoringProvider component from the Toolbox:

3. Fill its properties:

•	 ProviderName (e.g. “Remove Comment”)

•	 Description (e.g. “Completely removes this comment and its neighboring comments”)

•	 AutoUndo (true)

625

4. Subscribe to the CheckAvailability, Apply and PreparePreview events:

626

5. Add the following code into event handlers:

CheckAvailability event handler

To indicate that the refactoring provider is available in the current context, we need to set the corresponding Avail-
able property. This refactoring should be available when the active code element is a comment, so we simply check if
the element is of the Comment type:

private void refactoringProvider1_CheckAvailability(object sender, CheckConten-
tAvailabilityEventArgs ea)

{

 ea.Available = ea.Element is Comment;

}

Apply event handler

In the Apply event handler we are going to remove the comment with its neighboring comments and surrounding
white space characters including empty lines. To do this, we get the active comment, then calculate its cut range for
removal using the special SourceRange methods, and, finally, deleting the calculated range:

private void refactoringProvider1_Apply(object sender, ApplyContentEventArgs ea)

{

 SourceRange cutRange = GetCutRange(ea.Element as Comment);

 ea.TextDocument.DeleteText(cutRange);

}

GetCutRange method:

private SourceRange GetCutRange(Comment comment)

{

 Comment startComment;

 Comment endComment;

 comment.GetFirstAndLastConnectedComments(out startComment, out endComment);

 BlockElements blockElements = BlockElements.AllWhiteSpaces | BlockElements.
SupportComments;

 return new SourceRange(startComment.GetFullBlockCutRange(blockElements).
Start,

 endComment.GetFullBlockCutRange(blockElements).End);

}

627

PreparePreview event handler

This event handler is required if you would like to show a preview hint for the refactoring. We will strike-through the
cut range of a comment:

private void refactoringProvider1_PreparePreview(object sender, PrepareContent-
PreviewEventArgs ea)

{

 SourceRange cutRange = GetCutRange(ea.Element as Comment);

 ea.AddStrikethrough(cutRange);

}

Now, compile the plug-in and see it in action:

The sample code is attached (14,098 bytes, Visual Studio 2010, C#).

How to specify the CodeRush user information and use it inside text expansions

If you use the CodeRush code templates heavily, and they specify the author of the source code, you may find
the IDE | User Info options page interesting. On this page, you can specify your first, last and middle name, and then
use them inside the text expansions, for example, to create a file header and specify its author.

The information on the User Info page in the IDE Tools Options Dialog is personal for every user. If you create code
templates that use the information from that page, other users that share the same templates do not have to edit tem-
plates. Instead, they only need to specify their names on the page, which is much easier. Here is what it looks like:

628

By default, there are only three key/values available:

•	 First Name – if not specified, automatically filled-in with the currently logged in user name.

•	 Middle Name – your middle name

•	 Last Name – your last name

You can add an additional key/value pair by clicking the New Record button. For example, you can specify your
position or date of birth. Two other buttons allow you to edit or remove existing key/value pairs. Note that you cannot
remove the three default key/values, only the items you have added manually.

The values provided on this page can be used by using the corresponding string providers. Here is the list of the user
info specific string providers that will return the information that you request:

String Provider Name Description
GetUserFirstName Gets the user first name
GetUserInfo Gets the user information specified by the key name passed as a parameter.
GetUserInitials Gets the user initials based on the user first and last name.
GetUserLastName Gets the user last name.
GetUserMiddleName Gets the user middle name.

629

Now let’s create a simple template that will generate the file header based on the information from the User Info page.
Before we start, specify your first and last name, and add the company field on the options page. Here is what the
template may look like:

//---

// <copyright file=””«?FileName»”” company=””«?GetUserInfo(Company)»””>

// Author: «?GetUserFirstName» «?GetUserLastName»

// Copyright (c) «?GetUserInfo(Company)», Inc. All rights reserved.

// </copyright>

//---

Once this template is expanded, you will see, inserted, a header similar to this:

//---

// <copyright file=””C:\Projects\TestClass.cs”” company=””DevExpress””>

// Author: Alex Skorkin

// Copyright (c) DevExpress, Inc. All rights reserved.

// </copyright>

//---

Bear in mind that you can put this header into all source files of your solution automatically with a single keystroke.
To learn more, please read the appropriate topic. I hope you find this interesting.

630

631

632

Appendix A. Terminology
Here is a list of terms often used when talking about IDE tools (including CodeRush, DXCore and Refactor!) for a
better understanding of these products. The list is not complete and it is going to be updated from time to time.

Action

Actions associate a name with functionality, which can be triggered using either a keyboard shortcut or a mouse but-
ton, and/or placed within a Visual Studio menu. Some actions accept parameters that can change their behavior.

Action Hint

Action hints inform new users about IDE tools features, as they occur by pointing to a location on-screen with a large
colored arrow, displaying a short text message.

Adornment

Adornment represents a graphical object inside VisualStudio code editor.

Alias (RegEx Alias)

A number of solutions in IDE tools rely upon regular expressions to match a text. DXCore extends the regular
expression engine by adding aliases – the ability to replace a complex regular expression with a human-readable
alias. DXCore includes a number of predefined aliases (e.g. Identifier, Argument,Param, Initialization, StringCon-
stant, Typecast, etc).

Big Hint

Big hints are large tool tips which describe an active feature or provide other helpful information.

Billboard Hint

Billboard hinting briefly displays a large message that clearly communicates a significant state change. While the
billboard hint is on screen, you can continue to work.

Code Declare

Code modification providers that intended to declare new source code language structures, e.g. new types, members,
variables.

Code Issues

Also known as Code Analysis feature, that performs a static code analysis to find issues in your source code. It
marks found issues with colored wavy lines and allows you to perform a fix immediately. The following issues can be
found: errors, warnings, hints (suggestions), dead code and code smells.

Code Preview

Code Preview Window shows the syntax-highlighted source code. It is used in refactoring previews and some tool
windows.

Code Provider

Code Provider represents a code modification operation provider (similar to a Refactoring Provider), which may
change program behavior.

633

CodeRush

CodeRush is a powerful Visual Studio .NET add-in that enhances the developer experience by accelerating developer
and team productivity via an integrated suite of technologies.

CodeRush Xpress

CodeRush Xpress is a completely free version of CodeRush Pro available to all Visual Studio 2008 and 2010
CSharp and Visual Basic developers, and offers a comprehensive suite of tools that enable you and your team to
simplify and shape complex code – making it easier to read and less costly to maintain.

Context

The context determines if a particular feature is appropriate for use when working inside Visual Studio IDE by spec-
ifying a collection of boolean states (e.g. “Caret is inside method” or “Menu is active“). It is useful for distinguishing
conditions where a feature should be available.

Decoupled Storage

The DecoupledStorage object is used to handle storage for your DXCore plug-ins data.

Dynamic List

Dynamic List represents a named list of mnemonics and its values that are used in the CodeRush Templates En-
gine for increasing the amount of possible template variations.

DXCore

DXCore provides services, wizards, and a visual extensibility framework designed to make it easy to extend Visual
Studio. All products like CodeRush and Refactor! were designed on the DXCore Framework.

Editor Caret

Editor caret is a text cursor representing a current position in the Visual Studio code editor.

Embedding

The Code Embedding feature allows you to surround the selected block of code or text into an appropriate block.

Feature UI

Feature UI (also known as the “What Happened?” window) appears in the bottom right corner each time a particu-
lar IDE tools’ feature is activated to inform you about what’s going on inside Visual Studio IDE. In the majority of
cases, the window is used to simplify learning of the CodeRush specific features.

Highlighting

Highlighting usually represents one of the CodeRush visualization features intended to visually concentrate and
indicate particular source code elements.

Hinting

The discoverability elements to help you learn more about features in IDE tools, such as Action Hints, Big
Hints, Shortcut Hints, Billboard Hints.

634

IDE tools

IDE tools bundle includes the following Visual Studio productivity add-ins: DXCore, CodeRush Pro, CodeRush
Xpress, Refactor! Pro, Refactor! for C++, Refactor! for ASP.NET.

Intellassist

Intellassist feature auto-completes text at the editor caret with appropriate suggestions like an in-scope identifier,
enumeration elements and others.

Inversion

Selection inversions take an existing selection and replace it with code that is essentially the opposite of the original.
You can use it to swap assignment statements, invert the logic in boolean assignments to true or false, change the
iteration direction on for-loops and more.

Language Element

LanguageElement is the main base class for a rich variety of classes that denote a construct occurring in the source
code and present a corresponding node in the abstract source tree built by DXCore Framework.

Linked Identifiers

Linked Identifiers are a built-in feature of DXCore, which allows you to simultaneously change similar pieces of the
text (code) located in different places. If you change one linked identifier, the others that are associated with it will
automatically be changed as well.

Markers

Markers are navigation placeholders that remember important locations inside your source code you’ll need to move
to in the future.

Message Log

Message Log is a diagnostic tool window with valuable information, which can be helpful to troubleshoot issues
appearing in IDE tools. It is available via the DevExpress | Tool Windows | Diagnostics | Messages menu item.

Nav Field

Navigation Fields allow you to quickly navigate between related code fragments. They highlight related fragments
and allow you to easily tab through them in both directions.

Nav Link

Navigation Links allow you to quickly navigate between related pieces of code. They highlight particular code frag-
ments and allow you to easily tab through them in both directions.

Nav Provider

Provides a navigation operation intended for quick moving inside your source code.

Options Dialog

Most of the aspects of the IDE tools (CodeRush and/or Refactor!) functionality can be customized using the Op-
tions dialog.

635

Options Page

Options page allows users to easily customize the features of IDE tools and other custom plug-ins. Options pages are
automatically integrated into the Option Dialog.

Plug-In

A plug-in is a special class that resides in an assembly that is loaded into the Visual Studio environment when DX-
Core starts-up. DXCore plug-in enhances the functionality of IDE tools.

Plug-In Wizard

Plug-in wizards are simplifying the process of creating DXCore plug-ins, such as tool windows, standard plug-ins
and options pages. These wizards lay down the framework upon which your plug-ins will grow.

Refactor! Popup Menu

Refactor! Popup menu is a drop-down menu that lists all currently available refactoring/code operations for the cur-
rent editor caret position and/or code selection.

Refactoring provider

Represents a particular refactoring operation for the restructuring of an existing code block, altering its internal struc-
ture without changing its external behavior in order to improve readability and the maintainability of the source code.

Service

Service is a set of a DXCore related functionality that you can use when developing plug-ins.

Shortcut Binding

A shortcut binding assigns a key to an action or to a Visual Studio command. Both actions and commands can be
assigned keystrokes in both Visual Studio’s options dialog and in the DevExpress options dialog.

Shortcuts Hint

Shortcut hints list available shortcuts for the active state. Shortcut hints usually appear in response to a newly activat-
ed in-source user interface.

Smart Tag

Smart tag is small glyph that indicates the availability of refactorings or code provider operations.

String Providers

String providers are functions that return strings, and can be used to provide calculated information (e.g., date/time
stamps, user names, active file name, etc.).

Target Fields

The target indicator shows where the caret will be positioned when you press Num Enter or Enter to accept last
active text field.

Templates

Code templates are blocks of code that expand from short abbreviations typed into the code editor. Using code

636

templates decreases code creation time, because it avoids having to type the entire code manually and allows creating
regular code sections with only a few keystrokes.

Text Commands

Text commands are participating in the CodeRush code modification engine to perform a specific operation, e.g.
move the editor caret, add an assembly reference, paste clipboard contents, invoke the Intellisense, etc.

Text Document

Text document represents an opened source code file in the Visual Studio code editor.

Text Expansion

Text expansion is a dynamic text containing encoded text commands and/or string providers, which is expanded into
a block of code (text) with various elements of user/code interaction.

Text Fields

Text fields allow you to enter data and then press Num Enter or Enter to quickly move to the next field. Text fields
are highlighted in the editor and usually have a tooltip below them describing the nature of the data expected.

Text View

The text view represents a view into a text document. Visual Studio may offer several views by splitting the main
text document window horizontally or vertically. Text views are useful for painting on the editor and also for working
with selections and the editor caret.

Tile

Tiles are rectangular regions on a text view designed to interact using the mouse. For example, CodeRush’s Flow
Break Icons feature is implemented with this technology.

Tool Window

Tools windows are child windows of the Visual Studio integrated development environment that are used to display
information or provide a different kind of IDE functionality. For example, there are: CodeRush tool window and User
Guide tool window.

User Guide

The User Guide tool window documents DXCore and dependent products, such as CodeRush and/or Refactor! if
they’re installed. It also includes documentation covering Visual Studio extensibility using DXCore Framework.

Visualize Toolbar

The Visualize Toolbar is similar to all other standard Visual Studio toolbars and contains a group of toggle buttons,
allowing you to quickly turn off commands or controls that are typically related in their function.

637

638

Appendix B. CodeRush Options

IDE Tools Options Dialog

Most of the aspects of the IDE tools (CodeRush and/or Refactor!) functionality can be customized using the Op-
tions dialog, which can be accessed via the DevExpress | Options… menu item in your IDE. You can also use
the CTRL+SHIFT+ALT+O shortcut.

Here’s how it looks like:

Now let’s take a closer look at all the parts of this dialog:

639

1) Sections/Categories. All standard DXCore pages are subdivided into the following sections:

Section Description
Compatibility The Compatibility section contains IDE tools and Visual Studio compatibility options.
Core Contains DXCore options.
Diagnostics Contains IDE tools diagnostics options.
Editor This section contains the primary option set. Options of this section are related to the code

editor.
Hinting Contains IDE tools hints options.
IDE Contains options that affect Visual Studio behavior.
Tool Windows The built-in tool windows options, e.g. User Guide tool window.

2) Search text box

The search text box in the upper left-most position of the options dialog is used to incrementally search for available
pages by their title for quick navigation to a desired page.

3) Page name

The page name you’re currently viewing.

4) Navigation buttons and user level icon

640

In the upper right corner of the dialog, there are two Navigation buttons. These function in the same way as the
“back” and “forward” buttons, allowing you to navigate back to a page previously visited, and then forward again
to where you started. Near the navigation buttons there’s a user level icon, so you can see a colored icon which rep-
resents the level of the current page. See User Level combo box (#6) for details.

5) Options page contents

This area shows all available settings for the current options page.

6) User Level combo box

There are three experience levels to choose from – New User, Advanced and Expert. Choosing the New User op-
tion will result in only the most commonly used settings being displayed, and the rest, which are less frequently used,
being filtered out, making it easier to customize the settings.

7) Language selector

Some options are dependent upon the programming language used in a project. Use the language selector to specify
the programming language that you are customizing the options for. Note that if the currently active project’s lan-
guage differs from the selected one, a warning hint will be displayed. See the “How the Language combobox on the
Options Dialog is being populated” topic to learn more.

8) Default Settings… button

You can restore the default settings (for pages that support this) at any time by clicking the Default Settings… but-
ton. If you’d like to restore all factory default settings see the “Where IDE tools settings are stored” topic.

9) OK, Cancel, Apply buttons

These are self explanatory.

Notes:

•	 Unfortunately, the options dialog is modal at the moment, which doesn’t allow you to test settings
when it is up.

•	 The Options Dialog remembers its size, location, and the last page you visited when closed. So,
after the dialog is reopened, you’ll see the same page you viewed before it was closed.

•	 You can easily add your own options pages to this dialog if you’re writing DXCore plug-ins.
They will appear in the standard sections or in a section that you choose.

How the Language combobox on the Options Dialog is being populated

Some people are asking how the Language combobox is populated in the Options Dialog. Once you have in-
stalled IDE tools and open the Options Dialog, you will see that the Language combobox is empty. But after some
work in Visual Studio IDE this combobox is being populated with items. So, when and how is it populated?

641

The answer is that this combobox is populated with items when you open up some source files in Visual Studio IDE
and have a corresponding language service for that file. So, if you open up an F# file (.fs) and you have the FSharp
language service installed, you will see a new entry.

You may have a list that contains some of the following items:

•	 CSharp

•	 Basic

•	 C/C++

•	 FSharp

•	 JavaScript

•	 HTML

•	 XML

•	 CSS

•	 XAML

•	 T-SQL

•	 Plain Text

and others.

Startup options page

The Startup options page from the Core category allows you to tweak the IDE Tools start-up settings. The page level
is expert, so do not change these options if you do not actually need this. Here is what the options page looks like
(click the image to enlarge):

642

Available settings are:

•	 Load manually

Allows you to toggle automatic loading of IDE Tools. If checked, IDE Tools will not be automatically loaded. In this
case, you have to select DevExpress -> Load or Tools -> Load DevExpress menu item (depending on the IDE Tools
version you use). To learn more about the manual loading process, please refer to the “How to temporally disable IDE
tools (load manually)” topic.

•	 Disable clipboard monitoring

DXCore framework sets up a Windows Clipboard hook to monitor its content and clipboard-specific events. This
option toggles the hook operability. If unchecked, then clipboard features will become disabled. The option is used
when you have issues with the Windows Clipboard.

•	 Use raw assembly load (prevents locking of plug-in assemblies)*

Specifies how the DXCore Plug-in Loader loads the plug-ins assemblies. If you are a DXCore plug-ins developer,
use this option, so your plug-in assemblies are not being locked-up when they are loaded into another instance of the
Visual Studio IDE. However, you cannot restart an already loaded plug-in – you have to restart your Visual Studio
IDE to reload the recompiled plug-in. Note that this option is available starting from the next 2011.2 IDE Tools
release.

643

Settings paths option page

IDE Tools (CodeRush, Refactor! and DXCore) use several physical paths to store its settings, log and cache files, and
community plug-ins. All these paths are configurable on the Core | Settings options page in the Options Dialog. This
is what the page looks like:

You can specify the following paths:

•	 A storage folder for the user settings and the log files. This folder, in turn, contains two folders:

o the “Settings.xml” folder where all settings of IDE Tools are stored

o the “Log” folder with various log files, which can be used to troubleshoot the IDE Tools

•	 A folder for the community plug-ins. You may install a community plug-in into this folder and
they will be automatically loaded by IDE Tools when found.

•	 A folder for storing the cache files. There are solution and assembly caches generated by DXCore.
They are used to improve the overall performance when working with big projects. You can safely remove
the cache folder, because it will be recreated by DXCore next time you open and use a particular project.

There is also an additional option to synchronize the font and color settings with IDE. These are Visual Studio IDE
settings for fonts and colors, accessible via the “Tools -> Options -> Environment -> Fonts and Colors” menu item.
Retrieving these settings from Visual Studio takes significant time, so IDE Tools simply retrieve them once on the
first startup and stores them in its settings files for later reference to improve performance.

644

These settings are used by the CodeRush and DXCore features which paint over the Visual Studio code editor.
For example, a BigHint component may use the background color specified in the Visual Studio Color options. Or,
the Refactor!/CodeRush Popup menu uses the IDE code editor font and its size to correspond to the IDE. If you
notice any color or font mismatch for different IDE Tools hints and visual features, or manually change the Visual
Studio Font and Color settings, you might need to synchronize them with IDE Tools by clicking the Synchronize but-
ton. If synchronization is successful, you will see the corresponding message:

Changing global identifiers style in CodeRush

Identifiers are names of various program elements in the code that uniquely identify a code element like namespace,
class, interface, method, variable and others.

There are numerous identifiers style conventions which include usge of the Pascal or camel casing, use of underscore
as a prefix, etc. That is why CodeRush allows you to configure the identifier style that will be globally applied for all
features that create or generate new code: refactorings, code providers, code templates and others.

The options page is named Identifier and is located in the Editor | Code Style category in the Options Dialog:

645

The page allows you to tweak options for the following elements:

•	 Fields

•	 Parameters

•	 Local Variables

The following options can be changed:

•	 Casing: Pascal or camel

•	 Prefix of an identifier name

•	 Suffix of an identifier name

Once something is modified, you can see the preview of your change in the corresponding Sample box.

This options page is language dependent. You can change the identifier style for every language supported by
CodeRush.

Smart Tags Catalog options page

The Smart Tags Catalog options page shows registered Smart Tags providers and allows you to control their appear-
ance in the code editor context menu and CodeRush Popup menu.

The options page is simple. This is what it looks like:

646

Toggle the “Show in Context Menu” option to add or remove specific smart tag providers in the context menu of the
code editor:

Toggle the “Show in Popup Menu” option to add or remove specific smart tag providers in the CodeRush/Refactor!
popup menu:

647

Features options page

The Features options page in the Core category of the Options Dialog provides access to the Feature UI engine. The
engine controls the feature execution, shows the What Happened hint when a particular CodeRush feature is execut-
ed, and allows you to turn it off if you don’t need it. The What Happened hint is also shown when a conflict shortcut
exists with Visual Studio IDE. In this case you can choose which feature should be performed by default whether it is
Visual Studio one or CodeRush one.

This is what the Features options page looks like:

The Show Feature UI window option controls the availability of the What Happened hint. If it is unchecked, you
will never see the hint; otherwise, the hint is shown every time the CodeRush feature is executed.

The When conflicting shortcuts exist option allows you to choose the default preferred shortcut when CodeRush
shortcut conflicts with Visual Studio. The chosen conflicting shortcut (CodeRush one or Visual Studio one) will be
executed by default without further notification.

The When feature is being executed option allows you to specify the default action for the CodeRush feature:
whether it should be allowed or suppressed. If you choose “allow”, the feature will be executed as expected; other-
wise, the feature will be suppressed and the What Happened hint will appear (if enabled).

After all options there is a tree list of features executed previously. It is populated every time a new CodeRush feature
is executed. The list shows the feature name, its description and state. All features are grouped by categories.

The state of a feature can be of four values:

648

•	 Enable feature. The feature is enabled without restriction. No What Happened window appears
for this feature in this state.

•	 Disable feature. The feature is disabled (suppressed), no execution allowed. No What Happened
window appears for this feature in this state.

•	 Mixed (only for groups). This state is shown for groups when they have features of both states:
enabled and disabled.

•	 Show Feature window and apply default action. The feature is registered and not suppressed. The
What Happened hint will appear for this feature (if enabled).

Features Statistics options page

The Features Statistics options page is the part of the Features UI engine. It shows the execution count of a particu-
lar feature. The options page is located in the Core category of the Options Dialog:

The table of features contains four columns:

1. Name. The name of the feature.

2. Description. The description of the feature.

3. Execution Count. The number of times the feature has been executed.

4. Feature Group. The category name of the feature.

649

The list of features can be grouped by any column. It is recommended that you group the list by the Feature Group
column:

The statistics list can be exported into the HTML file format by clicking the Export to HTML button.

Shortcuts options page

The Shortcuts options page is an important and one of the most often used options pages. It allows you to create,
modify and remove shortcut bindings for all IDE Tools products (CodeRush, DXCore, Refactor!). The page is located
at the IDE | Shortcuts path in the CodeRush Options Dialog. Here is what it looks like:

650

Shortcuts can be bound to keyboard strokes or mouse buttons. When creating a mouse shortcut you can use the left,
right, middle, wheel and browse buttons in combination with shift key (Ctrl, Alt, Shift). Mouse shortcuts are available
only when the code editor has focus. Keyboard shortcuts, on the other hand, are available anywhere in the Visual
Studio IDE.

There are three main parts of the options page:

1. A toolbar with a several useful buttons at the top

2. The list of existing shortcuts with a couple of information columns on the left

3. A panel with available options on the right when an item in the list is selected

651

Let’s take a closer look at each part.

Shortcuts List (#2)

All shortcuts are grouped into the folders in the shortcuts list. Every folder may specify an area for which shortcuts
are defined, e.g. Navigation, Selection, Unit Testing, and others. Some folders specify the product with dedicated
shortcuts, e.g. DXCore, Refactor!. You can create your own folders, and modify (rename) or remove existing ones.

A folder is expanded by a single mouse click on its icon or a double clicking its name. Once expanded, you can see
the sub-folders and shortcuts that are defined in this folder. The sub-folders may contain other sub-folders and addi-
tional shortcuts. Such structure is created to better organize numerous IDE Tools shortcuts.

A shortcut item in the shortcuts list on the left has three columns:

1. Shortcut – a key or mouse binding that will execute the specified command once pressed or
clicked. Note that you can have several shortcuts with the same key binding that will perform different or
identical commands.

2. Command - the name of a command (an action name) that is being performed once the key bind-
ing is executed. Note that you can have several shortcuts bound to the same command name with different
or identical key bindings.

652

3. Context – the context in which the key binding is valid and available. To learn more about con-
texts, please read an appropriate topic – Contexts Overview. Note that you can have several shortcuts bound
to the same key binding or command name but perform differently, depending on the context set.

The shortcuts list has a context menu that replicates most of the toolbar buttons and adds a few others:

Here is an overview of the context menu items:

Icon Has

toolbar

button

Item name Description

 New Keyboard Shortcut Adds a new keyboard shortcut to the current shortcuts folder.

 New Mouse Shortcut Adds a new mouse shortcut to the current shortcuts folder.

 Duplicate shortcut Creates a copy of the selected shortcut. Note that this menu
item is disabled if there is no shortcut selected.

 New Folder Opens the New Folder dialog where you can specify the name
of a new folder and its location or cancel folder creation. The
dialog will not let you create a folder when the folder with the
same name already exists.

653

 Rename Folder Opens the Rename Folder dialog where you can specify a
new name for the current folder. If no folder is selected, the
corresponding menu item is disabled. The dialog will not let
you specify the name of a folder when the folder with the
same name already exists.

 Delete Removes the current shortcut or an entire folder with all
shortcuts inside, depending on the selected item (whether it is
a folder or a shortcut).

 Hide Shortcut Folders Hides all folders and shows all shortcuts in a plain list.

 Show Shortcut Folders Restores the folder structure once the folders were hidden.
This menu item is hidden if folders were not hidden.

Collapse Folders Collapses all folders to their definition, so its shortcuts are not
visible. Note that this menu items is only available when you
click a folder and not a shortcut.

Copy Binding Summary
(for tech support)

Generates the most important information about the selected
shortcut and copies it to the Clipboard. The information in-
cludes the following data: binding type (keyboard or mouse),
the binding itself, command name, command parameters,
comments, context, etc.

Copy Binding Link (for
documentation)

Generates a command name tag for documenting it in the
User Guideand copies it into the Clipboard.

Copy Context Copies the context of the selected shortcut, so it is easier to
initialize the context for new or similar shortcuts.

Paste Context Initializes the context of the selected shortcut to the previ-
ously copied one. This is a handy function, allowing you to
specify the context for a new shortcut based on the context of
others.

Here are what the New Folder and the Rename Folder dialogs mentioned in the table look like:

(Note: If the “Make this a top-level folder” checkbox is unchecked, the folder will be created as a sub-folder of the
currently selected folder; otherwise, it will be a root folder)

and

654

Toolbar (#1)

As you can see, almost all of these functions are also available on the toolbar located at the top of the page. However,
the toolbar has two additional buttons that do not exist in the context menu:

•	 - Find

Opens the Find dialog which allows you to find an existing shortcut or a folder. The dialog has four tabs where you
can specify different parameters for the dialog:

1) Folder:

Here you can specify a folder name.

2) Key Shortcut:

Here you can specify a key binding for a shortcut.

3) Mouse Shortcut:

655

Here you can specify a mouse button and a shift key for the shortcut.

4) Command:

Specify a command name or choose it from the list, to find the corresponding shortcut if one exists.

The dialog has two buttons at the bottom: Find and Find Next. The Find button searches for the first occurrence of a
shortcut, and the Find Next button allows you to search for other shortcuts with the same parameters.

•	 - Distinguish between left and right “Alt” (only for keyboard shortcuts)

Toggles an option to differentiate between the Alt (left Alt) and Alt Gr (right Alt) buttons. If enabled, both Alt keys
will be treated as an Alt key, otherwise, the two Alt keys will be treated as different buttons. According to the caption
of this option, it works only for keyboard shortcuts.

Shortcuts Settings (#3)

Now let’s see the options panel on the right side of the Shortcuts options page. If you have a folder selected, there
are two options available (see the screenshot at the top of this article):

1. Enabled, which specifies the availability of all shortcuts in the folder

2. Comment, where you can specify a comment for a folder

If you have a keyboard shortcut selected in the shortcuts list, the options panel will look similar to this:

656

On the top you can assign a key binding for a shortcut in the Key1 and/or Key2 fields. Press the keyboard sequence
in the Key1 field to assign a key binding. The Key2 field allows you to specify a second part of a key binding. For
example, you can specify the “Ctrl+T” keystroke as a Key1 and the “R” key as a Key2 – this will create a “Ctrl+T,R”
shortcut when you will have to press the Ctrl+T first and then the R key immediately to execute a command.

For the Mouse shortcuts the panel fields will look a bit different. For such shortcuts, you can select a Shift Key and
the mouse button from the list:

657

The Enabled option specifies whether the shortcut is available in the Visual Studio IDE. If it is not enabled, then the
key binding will not do anything.

The Command combobox allows you to specify or choose a command name for a shortcut. Choose a command (an
action) name and specify its parameters in the next field if required. Parameters are useful for commands that require
them. For example, you can specify a refactoring name as a parameter to the Refactor command. This will apply the
specified refactoring once the key binding is performed.

Next, the “After executing this command, pass shortcut on to IDE for default handling” option. This option specifies
whether or not to send the performed key binding to the Visual Studio IDE. If unchecked, the key binding will per-
form a command and will not send a key to the IDE, so IDE will not intercept the key press and will not perform any
actions bound to the same key binding.

Note, that if you assign both keys for a shortcut (in Key1 and Key2 areas) the “After executing this command, pass
shortcut on to IDE for default handling” option will be checked and you will not be able to change it (it becomes
disabled). This is, probably, a limitation of the current product version: you can not create a double-key shortcut and
not have it passed on the command to the Visual Studio IDE. This is how the Shortcuts Engine is designed – if the
Engine does not pass a second key to the IDE and perform an action bound to a shortcut, then Visual Studio IDE will
not get a second keystroke and it will stay in the “Waiting for second key of chord…” mode until you press something.
That is why the check box “After executing this command, pass shortcut on to IDE for default handling” is disabled
and ticked if you specify a second key.

After all options for a shortcut, there is a context picker that allows you to specify a context for a particular shortcut.

When a shortcut is created and executed, and it has a conflict with the Visual Studio IDE shortcuts, you will
see the Feature UI dialog that allows you to choose the default action to be performed in the future: whether
the CodeRush shortcut or a Visual Studio one will be performed by default.

You can read the following shortcuts-related articles, to learn more on how to create shortcuts:

How to assign a shortcut key to a particular action

How to assign a separate shortcut to a particular refactoring

How to assign a shortcut key to a particular action

658

It can be easily accomplished from the “Shortcuts” options page in the Options Dialog. Follow these steps to get to
the Shortcuts options page:

1. From the DevExpress menu, select Options…

2. In the tree view on the left, navigate to this folder: IDE.

3. Select the Shortcuts options page.

Here it is:

To create a shortcut:

1. Create a new folder by clicking on the New Folder button.

2. Enter a folder name, e.g. “MyShortcuts” and check the “Make this a top-level folder” check box:

659

3. Click the “New Keyboard Shortcut” button.

4. Enter a key for this shortcut into the “Key 1” text box (and into the “Key 2” text box if necessary).

5. Select an action from the Command combo box, e.g. “MyAction”.

6. Click OK to save your settings.

660

The shortcut has been created. Now the MyAction will be executed after pressing the shortcut key (CTRL+ALT+1 in
this example).

Hinting\Action Hints option page

The Action Hints options page manages settings for DXCore action hints. The following hint options are available:

Option
name

Description

Enabled Globally enables or disables action hints availability.
Fade In Determines whether or not an action hint will fade in (from transparent to the final Opacity setting)

when it first appears. If unchecked, action hints will appear immediately.
Fade Out Determines whether or not the action hint will fade out (from its Opacity setting to completely trans-

parent) when it closes. If unchecked, action hints will disappear immediately.
Display
Time

Determines how long (in milliseconds) an action hint will appear before closing.

Font Name The font name for the text of action hints.
Font Size The font size for the text of action hints.
Opacity The opacity of action hints.

The “Test” button is used for action hints appearance testing.

661

Under the global settings section there is a list of features which have been performed. You can specify additional
display options for the action hints associated with these features:

Option name Description
Never show this hint The action hint will never be displayed for the selected feature.
Display this hint the first ### times that this
feature is used

The number of times the action hint for the selected feature
should be displayed before it is suppressed. If you want your
action hint to be displayed this many times every IDE session,
then check the “Reset display count each time I start Visual
Studio” option.

Reset display count each time I start Visual
Studio

Resets the display count for the selected feature each time DX-
Core/CodeRush loads.

Always display hint when this action is per-
formed

The action hint will be displayed each time the selected feature
is executed.

In addition, there is statistical info shown for the selected feature – how many times this feature has been performed.

Hinting\Big Hints option page

This options page is similar to the Action Hints options page, but a bit simplified, however. The page manages
settings for the DXCore big hints appearance, and allows you to test them. Also, here you can entirely disable the big
hints from appearing.

662

Use the “Test” button to see what the big hint will look like with the specified title and text in the appropriate text
boxes.

Under the global settings section (which is used for testing actually) there is a list of features which have been per-
formed. You can specify additional display options for the action hints associated with these features:

Option name Description
Never show this hint The big hint will never be displayed for the selected feature.
Display this hint the first ### times that this
feature is used

The number of times the big hint for the selected feature should be
displayed before it is suppressed. If you want your big hint to be
displayed this many times every IDE session, then check the “Reset
display count each time I start Visual Studio” option.

Reset display count each time I start Visual
Studio

Resets the display count for the selected feature each timeDXCore/
CodeRush loads.

Always display hint when this action is
performed

The big hint will be displayed each time the selected feature is exe-
cuted.

In addition, there is statistical info shown for the selected feature – how many times this feature has been performed.

Unavailable Contexts option page

The Unavailable Contexts options page shows the list of DXCore contexts and its default values that may not always
be available in IDE Tools:

663

 This could be the case when you have removed the plug-in containing a context, but a context is stored and used
somewhere in the setting files (e.g. a keyboard shortcut or template). Once a context that does not actually exist is
being checked, you will see the following dialog:

Choose a default value for the context whether it is satisfied or not satisfied by default. Your choice is saved on
the Unavailable Context page inside the CodeRush Options Dialog, if you tick the “Remember this response” check-
box.

664

An entry in the list on the options page has a small icon indicating your choice:

•	 () satisfied when absent or

•	 () not satisfied when absent

Click an icon to change the default value of a context. You can remove an entry from the list by clicking the De-
lete button and confirm the deletion:

If the removed context is being checked again and it still does not exist, the Context Unavailable dialog will appear
again, asking you to specify a default value.

665

666

